Golder Associates Ltd.

10th Floor, 940 6th Avenue S.W. Calgary, Alberta, Canada T2P 3T1 Telephone (403) 299-5600 Fax (403) 299-5606

REPORT ON

OIL SANDS REGIONAL AQUATICS MONITORING

PROGRAM (RAMP) 1999

Submitted to:

RAMP Steering Committee

May 26, 2000

992-2307

Golder Associates Ltd.

10th Floor, 940 6th Avenue S.W. Calgary, Alberta, Canada T2P 3T1 Telephone (403) 299-5600 Fax (403) 299-5606

May 29, 2000

992-2307

Attention: Distribution List

RE: Oil Sands Regional Aquatics Monitoring (RAMP) 1999 Report

Attached is the RAMP 1999 report.

Yours very truly,

GOLDER ASSOCIATES LTD.

une Lagination

Marie Lagimodiere, MES, P.Biol. Aquatic Biologist

Distribution

Tim Shopik Andrew Cummins Judy Smith Lonnie Melnychyn Terry Van Meer Geoff Chow Tony Punko Ken Shipley Bertha Ganter Bryan Kemper Eric Davey Sonny Flett Margaret Fairbairn Bev Ross Fred Hnvtka Jay Nagendran Anita Sartori Larry Rhude Leigh Noton Dave Trew Gail MacCrimmon Mark Spafford

Mobil Oil Canada Properties – 5 copies Suncor Energy Inc., Oil Sands - 5 copies Shell Canada Limited - 5 copies Petro-Canada Oil and Gas - 5 copies Syncrude Canada Ltd. - 5 copies Koch Canada Ltd. - 5 copies Athabasca Chipewyan First Nation Fort McKay Industry Relations Corporation Fort McKay Industry Relations Corporation Kemper² & Associates Athabasca Tribal Council – 4 copies Fort Chipewyan Metis Environment Canada - 2 copies Department of Fisheries and Oceans Department of Fisheries and Oceans Alberta Environment Alberta Environment Alberta Environment Alberta Environment Alberta Environment Oil Sands Environmental Coalition Alberta Pacific Forest Industries Inc.

EXECUTIVE SUMMARY

Purpose and Scope

The area around Fort McMurray, Alberta is experiencing a large increase in oil sands mining and related developments. To integrate long-term monitoring of the aquatic environment in the Oil Sands Region, the Regional Aquatics Monitoring Program (RAMP) was developed as a multi-company program currently sponsored by Suncor Energy Inc., Oil Sands, Syncrude Canada Ltd., Albian Sands (Shell Canada Ltd.) and Mobil Oil Canada Properties.

The RAMP Steering Committee, formed in 1998 as the decision making body of RAMP, held five meetings in Fort McMurray in 1999. Highlights of 1999 include: finalizing the Terms of Reference for RAMP; holding community meetings in Fort Chipewyan and Fort McKay; establishing the scope of the 1999 monitoring program; achieving significant progress towards a core monitoring program; selecting a logo by holding a logo design contest in schools; issuing the first RAMP newsletter; developing a draft communication implementation plan; and completing planned monitoring activities.

The 1999 monitoring program was a continuation of long-term monitoring that began in 1997. To effectively evaluate aquatic ecosystems within the Oil Sands Region, 1999 monitoring focussed on the following areas potentially affected by development activities: Athabasca River; Athabasca River Delta; tributaries of the Athabasca River, including the Muskeg River (and tributaries to the Muskeg River), Steepbank River and McLean Creek; Shipyard Lake; and acid sensitive lakes.

The 1999 program consisted of three main components:

- 1) water and sediment quality in rivers and wetlands;
- 2) fish populations in rivers; and
- 3) water quality in acid sensitive lakes.

A Quality Assurance / Quality Control sampling program for water and sediment was developed in partnership with Alberta Environment. This field program focussed on the Muskeg River and Shipyard Lake.

The scope of the 1999 benthic invertebrate monitoring program included development of a study design for the Athabasca River and tributaries, and sampling of McLean Creek. Benthos in McLean Creek could not be sampled in fall 1999 due to low flows. The benthic study design is currently being developed and will be included in the 2000 report.

- i -

Golder Associates

RAMP also has the flexibility to address issues that are not part of the coremonitoring program. In 1999, these issues were:

- assessing the potential to include mussels as one of the core monitoring components; and
- addressing community concerns about external abnormalities (e.g., tumours) in fish.

Water and Sediment Quality

In 1999, RAMP continued to analyze the same set of water quality and sediment quality parameters analyzed in 1998. The scope of the 1999 water quality survey was:

- to resample Wapasu Creek and the mouths of the Steepbank and Muskeg rivers and Muskeg Creek, which were sampled in 1998;
- to sample the mouths of McLean Creek and tributaries to the Muskeg River;
- to expand seasonal sampling and toxicity testing in the Muskeg River;
- to monitor seasonal water temperatures in the Muskeg River, McLean Creek and the Alsands Drain; and
- to sample the Athabasca River far downstream of current oil sands developments (Athabasca River near Embarras and the Athabasca River Delta).

The scope of the sediment quality survey was to resample the mouth of the Muskeg River, and to sample the Athabasca Delta and the mouth of McLean Creek. The scope also included development of a sediment monitoring program for the Athabasca, Muskeg and Steepbank rivers, which will be provided in the 2000 report.

In 1999, winter water quality in the Athabasca River near the Embarras River and summer water quality in the Athabasca River Delta were generally consistent with historical data with a few exceptions. In 1999, total dissolved solids (TDS), total aluminum, total zinc and total barium concentrations were higher in the delta than in recent sampling events. Total aluminum, total zinc and pH were higher in the Athabasca River near Embarras in 1999. Total aluminum and total iron concentrations exceeded water quality guidelines for the protection of aquatic life, as they have in the past. Water from both locations was non-toxic (as defined by Microtox[®] testing) and contained non-detectable levels of naphthenic acids. Sediments from the Athabasca River Delta were found to be chronically toxic to three species of invertebrates. Methyl naphthalene was the

only element present in concentrations exceeding the Canadian Sediment Quality Guidelines.

The water quality of the Athabasca River tributaries sampled in 1999 was generally consistent with historical trends. As in previous years, naphthenic acids were detected in the Muskeg River and the Alsands Drain. Naphthenic acids were detected for the first time in McLean and Muskeg creeks. Although chronic aquatic toxicity was again observed in the upper Muskeg River, water samples from the lower Muskeg River and other tributaries were non-toxic (as defined by Microtox[®] testing) in 1999. TDS and total aluminum concentrations were generally higher at more sampling locations than in previous years. High sulphate levels were also observed in water samples from the lower Muskeg River in 1999.

Sediment quality at the mouth of the Muskeg River in 1999 was generally consistent with data from 1997 and 1998. In 1999, PAH concentrations in the upper Muskeg River were similar to concentrations at the river mouth, with the exception of C2-substituted naphthalene, methyl benzo(a)pyrene, methyl dibenzothiophene and methyl fluorene; these substances were present at higher concentrations in the upper Muskeg River. Sediments from the mouth of McLean Creek were found to be chronically toxic to several species of invertebrates. They generally contained higher total metal and PAH concentrations than sediments from the Muskeg River. Sediment PAH concentrations in McLean Creek were also higher than PAH concentrations observed in sediments from the Athabasca River Delta.

Fish Populations

In 1999, fisheries monitoring on the Athabasca River consisted of two components: spring fish inventory to document the presence and abundance of fish species within the Oil Sands Region and sentinel species monitoring.

Although reduced in scope, the spring 1999 fish inventory was a continuation of work done in previous years to evaluate possible year-to-year changes in the occurrence and abundance of the dominant fish species (i.e., walleye, lake whitefish, goldeye and longnose sucker). In general, species composition and relative abundance of fishes in the Athabasca River were similar to that observed in the spring of 1998. Walleye were captured in sufficient numbers to evaluate length and age distributions, and size-at-age over time. Length and age distributions remained consistent over time, although size-at-age showed greater variability. The change in size-at-age of walleye collected in 1999 suggests a possible decrease in food availability. The abnormally low water levels in the Athabasca River in 1998 and 1999 may have been related to this decrease.

Sentinel species monitoring was initiated in 1998 using longnose sucker. Due to concerns regarding the high mobility of longnose sucker, a small-bodied fish species that exhibits a smaller home range and reduced potential for large-scale movement was chosen. Reduced movement made it possible to select a

reference site within the Oil Sands Region, as well as exposed sites in close proximity to mining activities. Using small-bodied fish species may facilitate the separation of potential effects of oil sands development from other influences related to the natural oil sands formation, the town of Fort McMurray and other upstream development.

The sentinel species selected for the Athabasca River was trout-perch. There was no evidence indicating that trout-perch downstream of Suncor's discharge were different from reference fish. With the exception of a possible reduction in energy storage, trout-perch downstream of the Muskeg River were also similar to fish collected below Suncor's discharge and from the reference site.

Tributaries to the Athabasca River are included in the monitoring program because they provide important habitat for many fish species. A small-bodied fish species, slimy sculpin, was selected as the sentinel species for the Muskeg and Steepbank rivers because it is resident in the tributaries throughout the year and it is less mobile, relative to larger species. Sculpin collected from a reference site on the upper Steepbank River were used to evaluate the performance of sculpin collected from a site on the Muskeg River downstream of mining development and a site on the lower portion of the Steepbank River adjacent to mining activity.

In general, sculpin from the Muskeg River were older than reference fish and had reduced body weight, condition, gonad weight and liver weight suggesting a response to lower food availability relative to the reference site. In addition, parasitism was observed on sculpin from the Muskeg River. Low water levels in this section of the river may have affected the availability and quality of instream habitat. Sculpin from the lower Steepbank River were older and larger (length, weight) than reference fish, but few other differences in whole-organism characteristics were observed.

The observed responses of slimy sculpin from the Muskeg River and lower Steepbank River need to be confirmed over time before definitive conclusions can be made. Future monitoring should include more detailed analysis of habitat characteristics at each site. As well, additional reference sites are needed to ensure the full range of natural variability in fish characteristics within the Oil Sands Region is accurately defined. Power analysis of the trout-perch data confirmed that sample sizes were adequate to detect differences in all fish parameters had they existed. Power analysis also confirmed that sample sizes of sculpin were adequate to detect site differences in most parameters; however, more effort will be needed to collect higher numbers of males. In addition, improved techniques for ageing both trout-perch and slimy sculpin would increase confidence in age estimates.

Water Quality in Acid Sensitive Lakes

In 1999, a long-term acidification monitoring network was established, which forms a new component of RAMP. The objective of this component is to monitor lake water chemistry as an early-warning indicator of excessive acidic deposition. During 1999, the 32 lakes forming the network were selected from a large number of candidate lakes sampled previously by AENV. A field program was implemented in July and August, 1999, to collect baseline water chemistry data for the selected lakes and to verify that the lake selection criteria were satisfied by the lakes.

The 1999 data indicate that the 32 lakes provided a reasonable cross-section of the wide range of water chemistry documented by previous water quality surveys in north-eastern Alberta. Most lakes were moderately to highly acid-sensitive and naturally acidic (with pH<7). There was a strong relationship between total alkalinity and pH. A number of other parameters (colour, conductivity and most anions and cations) were also correlated with pH. Colour and dissolved organic carbon concentration spanned wide ranges in the study lakes, from clear water to brown water. The 32 lakes also varied widely in nutrient and chlorophyll a concentrations and encompassed nearly the full range in lake trophic status in the province, from oligotrophic to hyper-eutrophic.

The lakes sampled in 1999 generally satisfied the selection criteria developed for this program and are thus suitable for continued monitoring under RAMP. Thus, no major modifications are required to this component in the near-future, though it will continue to evolve as new information and needs dictate.

ACKNOWLEDGEMENTS

This report documents the results of the third year of the Oil Sands Regional Aquatics Monitoring Program (RAMP). Funding and in-kind support was provided by Suncor Energy Inc., Oil Sands, Albian Sands (Shell Canada Ltd.), Syncrude Canada Ltd., Mobil Oil Canada Properties Ltd. and Petro-Canada Resources.

Ian Mackenzie was the Chairperson of RAMP, Ken Shipley was the Vice Chairperson and John Gulley was the Secretary during 1999. The Golder Associates Ltd. (Golder) Project Manager was Marie Lagimodiere and the Project Director was John Gulley.

RAMP is a multi-stakeholder program, and benefits from the active participation of its member organizations. Several positive collaborations were achieved in 1999 and are reviewed below.

Winter water quality sampling was done by a crew consisting of Chris Bjornson (Golder), Jeff Brezenski (Golder), Charlie Voyager (Athabasca Chipewyan First Nation), Joe Marcel (Athabasca Chipewyan First Nation) and Basil Macdonald (Fort McKay).

Water quality sampling in spring was done by Jeff Brezenski (Golder), Bertha Ganter (Fort McKay Industry Relations Corporation [IRC]) and Charlie Voyager (Athabasca Chipewyan First Nation).

Alberta Environment (AENV) and RAMP collaborated on Muskeg River water quality sampling in summer and fall. Joint sampling of water and sediment quality was done as part of the QA/QC program and to compare results from different laboratories. The Alberta Research Council, Vegreville analyzed samples as part of the inter-quality assurance. Tony Calverley (Golder) and Bertha Ganter (Fort McKay IRC) worked with Mike Bilyk (AENV) and Morna Hussey (AENV) in the summer to conducted water quality sampling.

AENV contributed helicopter time for sampling on the upper Muskeg River during fall. AENV technicians involved in Muskeg River sampling were Mike Bilyk and Morna Hussey. They worked with Jeff Brezenski (Golder) to collect water samples from the Muskeg River and its tributaries. Jeff Brezenski and Russell Cardinal (Fort McKay) conducted fall water sampling in Shipyard Lake.

Marlene Evans, Jason Inkster and Charity Beres (Environment Canada, National Water Research Institute, Saskatoon), and Jumbo Fraser (Mikisew Cree First Nation) collected water and sediment samples for RAMP from the Athabasca

Delta. Marlene Evans also conducted polycyclic aromatic hydrocarbon (PAH) analysis on sediment samples from Kearl Lake and the upper Muskeg River.

Robert Grandjambe (Mikisew Creek First Nation) collected mussels from the Athabasca River Delta.

Mark Spafford (Alberta Pacific Forest Industries Inc. [Al-Pac]) conducted a fish health assessment training session in Fort Chipewyan. Four members of the Athabasca Chipewyan First Nation participated in the training session.

Benthic invertebrate sampling and reconnaissance was done by Zsolt Kovats (Golder), Russell Cardinal (Fort McKay) and Basil Macdonald (Fort McKay).

Terry Van Meer, Norm Jelfs and Melanie Ezekiel from Syncrude Canada Ltd. conducted the spring fisheries inventory on the Athabasca River.

The fall fisheries program was a collaborative effort between RAMP and Environment Canada staff who are working on the Panel on Energy Research and Development (PERD) program. Terry Van Meer, Norm Jelfs and Melanie Ezekiel from Syncrude Canada Ltd., and Wade Gibbons and Tony Calverley from Golder participated in fish collection on the Athabasca River. Joanne Parrott, Maria Colavecchia, and Gerald Tetreault from Environment Canada, and Wade Gibbons, Tony Calverley and Melanie Ezekiel sampled the tributaries and conducted fish biomarking. On-site laboratory space was provided by Suncor Energy Inc.

The acid sensitive lake monitoring program was developed and implemented through a joint effort of RAMP, AENV and Al-Pac. RAMP provided funds for field and analytical expenses. Dorothy Kelker from Al-Pac conducted the field program. AENV provided the data for the acid sensitive lakes section of the 1999 report.

The Regional Climatic and Hydrologic Monitoring Program provided the climate and hydrology information.

Twenty-five grade 7 and 8 students from Fort Chipewyan Community School, Fort McKay School, Westview School and Dickinsfield School participated in a contest to design a logo for RAMP. Syncrude provided a one-day educational aquatic field trip as a prize for winners of the logo contest. - viii -

The following Golder team members prepared sections of this report:

Introduction	Marie Lagimodiere John Gulley (technical review)
Climate and Hydrology Summary	Nathan Schmidt Dejiang Long (technical review)
Quality Assurance/Quality Control	Tanis Dirks Pat Tones (technical review)
Water and Sediment Quality	J.P. Bechtold (task manager) Tanis Dirks Mark Digel (technical review)
Fisheries	Wade Gibbons (task manager) Scott Stoklosar Dave Fernet (technical review) Stella Swanson (technical review)

The Acid Sensitive Lakes section was prepared by Zsolt Kovats (Golder) and reviewed by Dave Trew (AENV) and Brian Kemper (Kemper² & Associates). Pat Tones provided senior editorial review and Carole Collins (Golder) formatted the report.

TABLE OF CONTENTS

- ix -

SECTION

EXECUTIVE SUMMARY ACKNOWLEGEMENTS

<u>PAGE</u>

1	INTRODUCTION 1.1 OVERVIEW 1.2 1999 STEERING COMMITTEE ACTIVITIES 1.2.1 Communication 1.2.2 Program Review Committee 1.2.3 Core Program	1-1 1-2 1-5 1-7
2	 1999 MONITORING PROGRAM	2-1 2-3 2-4 2-5 2-7 2-7 2-8 2-8
3	METHODS 3.1 ATHABASCA RIVER 3.1.1 Water and Sediment Quality	3-1
	 3.1.2 Fish Populations	3-4 3-12 3-12
	3.3 WETLANDS	3-20 3-20
	 3.3.2 Sediment Quality 3.4 ACID SENSITIVE LAKES	3-21 3-21
4	QUALITY ASSURANCE / QUALITY CONTROL. 4.1 WATER AND SEDIMENT QUALITY. 4.1.1 Field Sampling 4.1.2 Laboratory Analysis 4.1.3 Data Analysis 4.2 FISHERIES 4.2.1 Field Sampling 4.2.2 Laboratory Analysis 4.2.3 Data Analysis	4-1 4-10 4-16 4-16 4-16 4-16 4-16
5	ATHABASCA RIVER – RESULTS AND DISCUSSION 5.1 WATER AND SEDIMENT QUALITY 5.1.1 Water Quality 5.1.2 Sediment Quality 5.1.3 Summary	5-1 5-1 5-1 5-7

TABLE OF CONTENTS

<u>SE</u>	<u>ECTION</u>	PAGE
	 5.2 FISH POPULATIONS 5.2.1 Fish Inventory	5-9 5-14
6	 TRIBUTARIES - RESULTS AND DISCUSSION. 6.1 WATER AND SEDIMENT QUALITY. 6.1.1 Water Quality. 6.1.2 Sediment Quality. 6.1.3 Summary. 6.2 FISH POPULATIONS. 6.2.1 Sentinel Fish Species Monitoring. 6.2.2 Summary. 	
7	WETLANDS - RESULTS AND DISCUSSIONS 7.1 WATER QUALITY 7.1.1 Shipyard Lake 7.2 SEDIMENT QUALITY 7.2.1 Kearl Lake	7-1 7-1 7-4
8	ACID SENSITIVE LAKES – RESULTS AND DISCUSSION	8-1
9	SUMMARY AND CONCLUSIONS. 9.1 SUMMARY. 9.1.1 Water and Sediment Quality. 9.1.2 Fish Populations. 9.1.3 Wetlands. 9.1.4 Acid Sensitive Lakes. 9.1.5 Quality Assurance/Quality Control. 9.2 CONCLUSIONS.	9-1 9-1 9-2 9-3 9-4 9-4
10	CLOSURE	10-1
11	REFERENCES	11-1
12	GLOSSARY AND LIST OF ACRONYMS 12.1 GLOSSARY 12.2 LIST OF ACRONYMS	12-1

LIST OF TABLES

Table 2.1	Overview of RAMP Sampling from 1997 to 1999	2-2
Table 2.2	Maximum and Minimum Mean Daily Discharges, RAMP Study Area	2-11
Table 2.3	Cumulative Streamflow Volumes, RAMP Study Area, March to September.	2-12
Table 2.4	Calculated Annual Evapotranspiration at Aurora Climate Station	
Table 3.1	Common Name, Scientific Name and Species Code of Fish from the Oil	
	Sands Region, Athabasca River	
Table 3.2	General Location and UTM Co-ordinates of Sampling Sites for Trout-	
	perch (<i>Percopsis omiscomaycus</i>), Athabasca River, Fall 1999	3-8
Table 3.3	1999 Water and Sediment Sampling Schedule for Athabasca River	
	Tributaries	3-1/
Table 3.4	Thermograph Locations in 1999	
		3-15
Table 3.5	General Location and UTM Co-ordinates of Sampling Sites for Slimy	2 4 0
	Sculpin (<i>Cottus cognatus</i>), Muskeg River and Steepbank River, Fall 1999.	3-10
Table 3.6	Location, General Description and UTM Co-ordinates of Fish Collection	0.40
-	Sites, Ells River, Fall 1999	3-19
Table 3.7	Characteristics of Lakes Selected for Long-term Acidification Monitoring,	
	Showing Data Available at the Time of Lake Selection	3-24
Table 4.1	1999 RAMP QA/QC Water and Sediment Sampling Program Schedule	
	and Description	4-2
Table 4.2	Summary of Water Quality Parameters in Field Blanks that Exceed Five	
	Times the Method Detection Limit	4-4
Table 4.3	Summary of Water Quality Parameters in Trip Blanks that Exceed Five	
	Times the Detection Limit	4-5
Table 4.4	Water Quality of Muskeg River Split Samples – RAMP Field QA/QC	
	Program, 1999	4-6
Table 4.5	Sediment Quality of the Muskeg River Mouth Split Sample - RAMP Field	
	QA/QC Program, 1999	4-8
Table 4.6	Water Quality of Total and Dissolved Metal Field Blanks (Muskeg River -	
	Downstream Stanley Creek) - RAMP Field QA/QC Program, 1999	4-9
Table 4.7	Summary of Water Quality Parameters in Lab Equipment Blanks That	
	Exceed Five Times the Detection Limit	4-11
Table 4.8	Percent Recovery of Water Quality Parameters in Spiked Samples,	
	RAMP Laboratory QA/QC Program, 1999	4-12
Table 4.9	Water Quality of Shipyard Lake Split Samples, RAMP Laboratory QA/QC	+ 12
	Program, 1999	4-14
Table 5.1	Water Quality in the Athabasca River and the Athabasca River Delta	
Table 5.2	Metal Levels in the Athabasca River and the Athabasca River Delta	
Table 5.2	Summary of Parameters Found to Exceed Surface Water Quality	
Table 5.5	Guidelines in the Athabasca River and the Athabasca River Delta	5 /
Toble 5 1	Sediment Characteristics in the Athabasca River Delta	5-4 5 7
Table 5.4		
Table 5.5	Concentration of Polycyclic Aromatic Hydrocarbons in Sediments from the	
	Athabasca River Delta	5-8
Table 5.6	Total Number, Percent of Total Catch and CPUE of Each Fish Species	E 40
	Captured in the Oil Sands Region, Athabasca River, May 1999	5-10
Table 5.7	Total Number, Percent of Total Catch and CPUE of Each Fish Species	
	Captured in the Oil Sands Region, Athabasca River, September 1999	5-10
Table 5.8	Total Number of Each Fish Species Caught and Observed at Each	
	Sampling Site, Athabasca River, Fall 1999	5-15
Table 5.9	Total Number of Female, Male and Immature Trout-perch (Percopsis	_
	omiscomaycus) Captured for Processing, Athabasca River, Fall 1999	5-15
Table 5.10	Mean Values (± SD) of Field Water Parameters Measured at Each Fish	
	Collection Site, Athabasca River, 1999	5-16

LIST OF TABLES

Table 5.11	Number of Trout-perch with Specific External/Internal Abnormalities, Athabasca River, Fall 1999	5-17
Table 5.12	Mean ± SE (n) of Body Size, Age and Fecundity of Trout-perch, Athabasca River, Fall 1999	
Table 5.13	Comparative Summary of Changes in Whole-organism Characteristics of Longnose Sucker (fall, 1998) and Trout-perch (fall, 1999) Collected from	
Table 5.14	the Oil Sands Region, Athabasca River Number of Trout-Perch per Site Needed to Detect Parameter Differences of 20, 30 and 50% between Sites	
Table 6.1	Water Quality in McLean Creek and the Steepbank River	
Table 6.2	Metal Levels in McLean Creek and the Steepbank River	
Table 6.3	Summer and Fall Water Temperatures in McLean Creek, 1999	
Table 6.4	Summary of Parameters Found to Exceed Surface Water Quality	
	Guidelines in McLean Creek and the Steepbank River	6-4
Table 6.5	Seasonal and Spatial Trends Observed in the Muskeg River, 1999	6-6
Table 6.6	Water Quality in the Muskeg River, 1999	6-7
Table 6.7	Historical Water Quality in the Muskeg River (Median Values)	
Table 6.8	Site-specific Variations in Muskeg River Water Quality, 1999	
Table 6.9	Spring, Summer and Fall Water Temperatures in the Muskeg River	6-12
Table 6.10	Summary of Parameters Found to Exceed Surface Water Quality	
	Guidelines in the Lower Muskeg River	6-14
Table 6.11	Summary of Parameters Found to Exceed Surface Water Quality	
-	Guidelines in the Upper Muskeg River	6-15
Table 6.12	Water Quality in the Alsands Drain and Jackpine, Shelley and Stanley	0.47
	Creeks	6-17
Table 6.13	Metal Levels in the Alsands Drain and Jackpine, Shelley and Stanley	C 40
Table 6.14	Creeks Spring, Summer and Fall Water Temperatures in the Alsands Drain	
Table 6.14 Table 6.15	Summary of Parameters Found to Exceed Surface Water Quality	0-19
	Guidelines in the Alsands Drain and Jackpine, Shelley and Stanley	
	Creeks	
Table 6.16	Water Quality in Muskeg and Wapasu Creeks	
Table 6.17	Metal Levels in Muskeg and Wapasu Creeks	6-23
Table 6.18	Summary of Parameters Found to Exceed Surface Water Quality Guidelines in Muskeg and Wapasu Creeks	6-24
Table 6.19	Sediment Characteristics in the Muskeg River and McLean Creek	
Table 6.20	Concentration of Polycyclic Aromatic Hydrocarbons in Sediments from	
	McLean Creek and the Muskeg River	6-29
Table 6.21	Summary of Parameters Found to Exceed Canadian Sediment Quality	
	Guidelines in McLean Creek and the Muskeg River	6-30
Table 6.22	Total Number of Each Fish Species Caught and Observed at Each	
	Sampling Site, Muskeg River and Steepbank River, Fall 1999	6-32
Table 6.23	Total Number of Female, Male and Immature Slimy Sculpin (Cottus	
	cognatus) for Processing, Muskeg and Steepbank Rivers, Fall 1999	6-33
Table 6.24	Mean Values (± SD) of Field Water Parameters Measured at Each Fish	
	Collection Site, Muskeg and Steepbank Rivers, Fall 1999	6-34
Table 6.25	Number of Slimy Sculpin with Specific External/Internal Abnormalities,	
T 1 1 0 00	Muskeg and Steepbank Rivers, Fall 1999	6-35
Table 6.26	Mean \pm SE (n) of Body Size, Age and Fecundity of Slimy Sculpin, Muskeg	0.00
	and Steepbank Rivers, Fall 1999	6-36
Table 6.27	Summary of the Response of Slimy Sculpin from Site MR-MT Relative to Site SR-R, Muskeg and Steepbank Rivers, Fall 1999	6-43

Table 6.28	Summary of the Response of Slimy Sculpin from Site SR-MN Relative to Site SR-R, Steepbank River, Fall 1999	6-45
Table 6.29	Number of Slimy Sculpin Per Site Needed to Detect Parameter	
	Differences of 20, 30 and 50% (i.e., effect size) Between Sites	6-47
Table 7.1	Water Quality in Shipyard Lake	7-2
Table 7.2	Metal Levels in Shipyard Lake	7-3
Table 7.3	Summary of Parameters Found to Exceed Surface Water Quality	
	Guidelines in Shipyard Lake	7-4
Table 7.4	Concentration of Polycyclic Aromatic Hydrocarbons in Sediments from	
	Kearl Lake and the Muskeg River	7-5

LIST OF FIGURES

Figure 1.1	Oil Sands Regional Aquatics Monitoring Program Organizational	
	Structure, December 1999	
Figure 1.2	Core Monitoring Program	1-9
Figure 2.1	Oil Sands Regional Aquatics Monitoring Program (RAMP) Study Area	
	(1997-1999)	
Figure 2.2	Snow Accumulation in Muskeg River Basin, 1997 - 1999	
Figure 2.3	Cumulative Annual Rainfall at Aurora Climate Station, 1996 - 1999	2-14
Figure 3.1	1999 RAMP Samples Sites in the Athabasca River and the Athabasca	
	River Delta	
Figure 3.2	1999 RAMP Fisheries Inventory Monitoring Reaches	
Figure 3.3	1999 Sentinel Fish Monitoring Sites	3-9
Figure 3.4	1999 RAMP Sampling Sites in the Muskeg River Watershed, McLean	
	Creek and Shipyard Lake	
Figure 3.5	Locations of Lakes Surveyed in 1999	3-23
Figure 5.1	Winter Total Aluminum Concentrations in the Athabasca River near the	
		5-4
Figure 5.2	Winter Total Zinc Levels in the Athabasca River near the Embarras River	5-5
Figure 5.3	Winter Total Iron Levels in the Athabasca River near the Embarras River	5-5
Figure 5.4	Summer Total Dissolved Solids Levels in the Athabasca River Delta	5-6
Figure 5.5	Summer Total Aluminum Concentrations in the Athabasca River Delta	5-6
Figure 5.6	Length-frequency Distributions for Walleye in the Oil Sands Region,	
	Athabasca River, 1995-1999	5-12
Figure 5.7	Age-frequency Distributions for Walleye in the Oil Sands Region,	
	Athabasca River, 1997-1999	5-13
Figure 5.8	Size-at-age Relationships for Walleye in the Oil Sands Region, Athabasca	
	River, 1997-1999	5-14
Figure 5.9	Age-frequency Distributions for Trout-perch at Each Sampling Site,	
	Athabasca River, Fall 1999	5-18
Figure 5.10	Gonadosomatic Indices (GSI) of a) Female and b) Male Trout-perch,	
	Athabasca River, Fall 1999 (a)	5-19
Figure 5.11	Liver Somatic Index of a) Female and b) Male Trout-perch, Athabasca	
-	River, Fall 1999 ^(a)	5-20
Figure 5.12	Plot of Fork Lengths vs. Age for Female Trout-perch, Athabasca River,	
-	Fall 1999	5-22
Figure 5.13	Plot of Fork Length vs. Age for Male Trout-perch, Athabasca River, Fall	
	1999	5-23
Figure 6.1	Total Iron Concentrations in the Muskeg River	6-13

LIST OF FIGURES

Figure 6.2	Total Manganese Concentrations in the Muskeg River	6-13
Figure 6.3	Fall Total Aluminum Concentrations in Jackpine Creek	
Figure 6.4	Fall TDS Levels in Jackpine Creek	
Figure 6.5	Fall Total Iron Concentrations in Muskeg Creek	6-24
Figure 6.6	Fall Total Manganese Concentrations in Muskeg Creek	
Figure 6.7	Fall Total Aluminum Concentrations in Muskeg Creek	6-25
Figure 6.8	Total Metal Concentrations in Muskeg Creek Relative to TSS Levels	6-26
Figure 6.9	Fall Total Aluminum Concentrations in Wapasu Creek	6-26
Figure 6.10	Catch-Per-Unit-Effort of Slimy Sculpin and Other Species, Muskeg River and Steepbank River, Fall 1999	6-33
Figure 6.11	Age-frequency Distribution for Slimy Sculpin, Muskeg and Steepbank Rivers, Fall 1999	6-37
Figure 6.12	Gonadosomatic Indices (GSI) of a) Female and b) Male Slimy Sculpin, Muskeg and Steepbank Rivers, Fall 1999 ^(a)	6-38
Figure 6.13	Liver Somatic Index (LSI) of a) Female and b) Male Slimy Sculpin,	0-30
rigure 0.15	Muskeg and Steepbank Rivers, Fall 1999 ^(a)	6-39
Figure 6.14	Plot of Total Length vs. Age for Female Slimy Sculpin, Muskeg and	
-	Steepbank Rivers, Fall 1999	6-41
Figure 6.15	Plot of Total Length vs. Age for Male Slimy Sculpin, Muskeg and	
-	Steepbank Rivers, Fall 1999	6-42
Figure 8.1	Comparisons of Field and Lab pH in the Lakes Sampled in 1999	8-3
Figure 8.2	Comparison of Historical Alkalinity Data with the 1999 Data	8-4
Figure 8.3	pH as a Function of Total Alkalinity in the Lakes Sampled in 1999	8-5
Figure 8.4	Calcium, Sulphate, Total Dissolved Solids and Specific Conductance in	
0	the Lakes Sampled in 1999	8-6
Figure 8.5	pH, Total Alkalinity, Dissolved Organic Carbon and True Colour in the	
	Lakes Sampled in 1999	8-7
Figure 8.6	Total Dissolved Nitrogen, Chlorophyll a and Total Phosphorus in the	
		8-9
Figure 8.7	Scatter-plots of Chlorophyll a Versus Total Phosphorus (TP) and the	
	Chlorophyll a : TP Ratio Versus pH in the Lakes Sampled in 1999	8-10

LIST OF APPENDICES

- Appendix I Laboratory Methods
- Appendix II Water Quality Data
- Appendix III Photos of Sentinel Fish Sampling Sites, Fall 1999
- Appendix IV Sentinel Fish Species Data
- Appendix V Water Chemistry Data for Acid Sensitive Lakes

1 INTRODUCTION

1.1 OVERVIEW

The northeastern Alberta area is experiencing a large increase in oil sands development as well as other developments. Such growth highlights the need to integrate environmental monitoring activities so that potential cumulative effects can be identified and addressed. The coordination of monitoring data collection results in the development of a more complete, cost-effective database that is used by oil sands operators for their environmental management programs and for assessments of proposed oil sands developments.

With respect to the aquatic environment, monitoring data are collected through the Oil Sands Regional Aquatics Monitoring Program (RAMP). RAMP is a multi-stakeholder initiative, currently funded by Suncor Energy Inc., Oil Sands (Suncor), Syncrude Canada Ltd. (Syncrude), Albian Sands [Shell Canada Ltd. (Shell)] and Mobil Oil Canada Properties (Mobil).

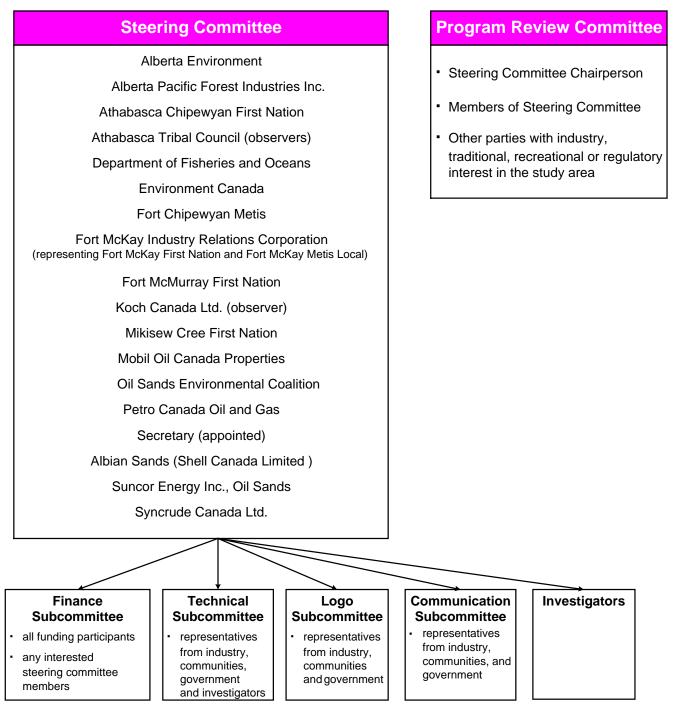
The mandate of RAMP, as defined by its multi-stakeholder Steering Committee, is to determine, evaluate and communicate the state of the aquatic environment in the Athabasca Oil Sands Region. It is designed as a long-term monitoring program with sampling frequencies ranging from continuous or seasonal to once every few years.

The objectives of RAMP are to:

- monitor aquatic environments in the oil sands area to detect and assess cumulative effects and regional trends;
- collect baseline and historical data to characterize variability in the oil sands area;
- collect data against which predictions contained in environmental impact assessments (EIAs) can be verified;
- collect data that satisfies the monitoring required by regulatory approvals of oil sands developments;
- recognize and incorporate traditional knowledge into the monitoring and assessment activities;
- communicate monitoring activities, results and recommendations to communities in the Regional Municipality of Wood Buffalo, regulatory agencies, environmental committees/organizations and other interested parties; and

• review and adjust the program to reflect monitoring results, technological advances and community concerns.

RAMP has been in place since 1997; hence, three years of sampling have been completed. The focus of monitoring has been on the Athabasca, Steepbank and Muskeg rivers, wetlands occurring in the vicinity of current and proposed oil sands developments and, more recently, acid-sensitive lakes in northeastern Alberta. Sampling conducted to date includes surveys of water quality, sediment quality, benthic invertebrates, fish and wetlands vegetation. In addition, a radiotelemetry study of walleye (*Stizostedion vitreum*) and lake whitefish (*Coregonus clupeaformis*) was conducted in 1997 and 1998.


This report describes both the organizational framework and administrative activities of RAMP, and the results of the 1999 field program. The framework and administrative activities are described in Section 1 and the 1999 monitoring program is described in Sections 2 to 9. The results describe data collected for RAMP but do not generally include data from other sampling programs in the region.

1.2 1999 STEERING COMMITTEE ACTIVITIES

The Steering Committee is the decision making body of RAMP. It consists of funding and non-funding members. Membership on the Steering Committee currently consists of industry, regulators and communities (Figure 1.1). The Steering Committee has the following functions:

- to prioritize projects within the program objectives to maximize use of available resources;
- to review project progress against budget and schedule;
- to review project results for relevance to program objectives; and
- to communicate results and solicit input from interested parties.

Figure 1.1 Oil Sands Regional Aquatics Monitoring Program Organizational Structure, December 1999

The RAMP Steering Committee held five business meetings in 1999 (January 27, March 4, May 18, September 13 and December 7). All Steering Committee meetings were held in Fort McMurray. Highlights of 1999 include finalizing the Terms of Reference, holding community meetings in Fort Chipewyan and Fort McKay, achieving significant progress towards development of a core monitoring program, designing a logo, issuing the first RAMP newsletter and developing a draft communication plan.

Terms of Reference (TOR) for RAMP were finalized in March 1999. The TOR addresses topics including committee structure, representatives, meetings, decision-making and reporting requirements. The TOR outlines the structure of the organization, including membership and roles of the Steering Committee and Program Review Committee, as well as any other committees or subcommittees that may be formed. The organizational structure and membership of RAMP as of December 1999 is presented in Figure 1.1.

The Steering Committee creates subcommittees to conduct specific tasks, when necessary. In 1999 there were four subcommittees of RAMP: finance, technical, logo and communication.

The Finance Subcommittee consists of funding members and any other interested members of the Steering Committee. This subcommittee develops annual budgets and funding formulas. The Finance Subcommittee met in March to determine funding formulas for the year.

The purpose of the Technical Subcommittee is to prepare an annual monitoring program for review and approval by the Steering Committee. Members of the Technical Subcommittee met several times in the latter part of December 1998 and in early 1999 to develop a framework for a core monitoring program for RAMP and to scope the 1999 field program. As well, the Technical Subcommittee held a workshop on June 16 to refine the fall sampling plan for 1999.

A Logo Subcommittee was formed to develop a logo for RAMP. The subcommittee held a logo design contest for grades seven and eight students in four schools. The participating schools were: Athabasca Delta Community School (Fort Chipewyan), Westview School (Fort McMurray), Dickinsfield School (Fort McMurray) and Fort McKay School. Members of the logo committee visited each of the participating schools to describe what RAMP is and talk about the contest. The participating students were to design logos with an aquatic theme and depict how and why "water resources" are important from a First Nation, Metis Local, local community or personal perspective.

Twenty-five students took part in the contest. The RAMP Steering Committee selected a winning logo from each of the schools that best reflected the contest theme. From these four logos, a grand prize winner was selected. The winning logo was designed by a student from Westview School. The prize for the winning logo was \$100 and an educational field trip. The three runners-up were also given a one-day educational aquatic field trip. All 25 students who participated in the contest received a RAMP T-shirt.

A Communication Subcommittee was formed to develop a RAMP communication implementation plan. The subcommittee consists of members from aboriginal communities, industry and government. Its purpose is to facilitate communication of RAMP's activities to its members and to communities in the Regional Municipality of Wood Buffalo, regulatory agencies, environmental committees/organizations and other interested parties. Activities of the Communication Subcommittee are described in Section 1.2.1.

1.2.1 Communication

One of the objectives of RAMP is to communicate monitoring activities, results and recommendations to its members and other interested parties. Other objectives of RAMP that involve communication are: satisfying regulatory requirements; reviewing and adjusting the program to reflect monitoring results, technological advances and community concerns; and incorporating traditional knowledge. Hence, RAMP needs to communicate to a variety of audiences in a number of different ways.

The Communication Subcommittee is developing a communication implementation plan. It outlines the means of communication, audiences, time frames for implementation, responsibilities and objectives to be achieved. There are four main means of communication about RAMP: 1) an annual monitoring report; 2) an annual summary report; 3) a newsletter; and 4) community meetings.

1.2.1.1 Annual Monitoring Report

The annual monitoring report is this report and it describes the detailed monitoring activities and results. It is submitted to Alberta Environment to fulfill part of the regulatory requirements for a number of the industry participants in RAMP. It also provides the information on which to make decisions about mitigation and future monitoring directions. There have been RAMP annual reports for monitoring activities in 1997 (Golder 1998a), 1998 (Golder 1999a) and 1999 (the current report).

1.2.1.2 Annual Summary Report

The first annual summary report will be prepared in 2000. It will provide information about the current state of regional aquatic ecosystems, based on information collected as part of RAMP and describe the work being done by RAMP.

1.2.1.3 Newsletter

The first RAMP newsletter was issued in September 1999. Topics in the newsletter included an overview of RAMP, what it wants to achieve and what is currently being monitored. There were also discussions about how RAMP is related to programs such as the Regional Sustainable Development Strategy, the Regional Climatic and Hydrologic Monitoring Program, and existing federal and provincial programs. Community meetings and ways to provide feedback to RAMP were also highlighted. The logo contest results were described and the winning logo and one of the runner-up logos were included in the newsletter.

The RAMP newsletter is currently distributed to all its member organizations as well as the following:

- Fort McMurray Library;
- Oil Sands Interpretive Centre;
- Alberta Energy and Utilities Board (EUB);
- Wood Buffalo Environmental Association (WBEA); and
- Alberta Environment's Regional Sustainable Development Strategy (RSDS).

Any person or organization interested in the newsletter can be added to the mailing list. RAMP plans to produce two newsletters per year.

1.2.1.4 Community Meetings

Two community meetings were held in 1999, one in Fort Chipewyan and one in Fort McKay. The schedule for future community meetings will be determined by the Steering Committee in consultation with representatives of each community.

Fort Chipewyan

The Fort Chipewyan community meeting was held on the evening of May 17 at the community hall in Fort Chipewyan. About 20 Fort Chipewyan residents attended the meeting. RAMP representatives from Alberta Environment

Golder Associates

(AENV), Mobil, Suncor, Department of Fisheries and Oceans (DFO), Environment Canada, Alberta-Pacific Forest Industries Inc. (Al-Pac) and Fort McKay Industries Relations Corporation (IRC) attended the meeting.

Fort McKay

Two Fort McKay community meetings were held in Fort McKay on December 8 in the community hall. Thirty-one elders attended a lunchtime meeting and 9 community members attended an evening meeting. Fort McKay Industry Relations Corporation (IRC) facilitated the meeting.

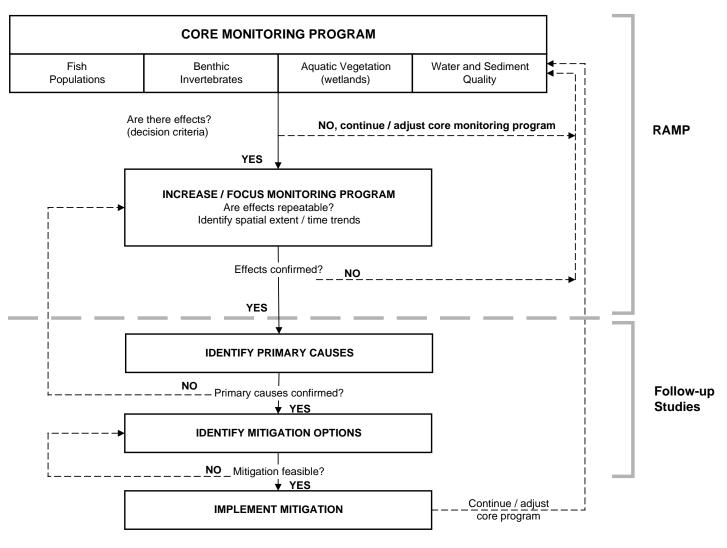
RAMP representatives included Mobil, Syncrude, Suncor, Shell, Koch, Petro-Canada, Al-Pac, DFO, Environment Canada, AENV and the Athabasca Tribal Council (ATC). As well as the RAMP members, additional representatives from the federal and provincial government attended to provide information on related water initiatives. Additional AENV representatives included fisheries, hydrology and forestry staff from the regional offices. There were also federal representatives from the Northern River Basins Program (NRBS) that was completed in 1996 and from the Northern Rivers Ecosystem Initiative (NREI), which is a research program designed to follow up on NRBS recommendations.

1.2.2 Program Review Committee

Membership in the Program Review Committee typically consists of parties with an industrial, recreational or regulatory interest in the RAMP study area. The Program Review Committee has the following functions:

- to evaluate the program for technical merit and for relevance to the needs of the members; and
- to facilitate communication and linkage with other regional environmental initiatives.

The Steering Committee has agreed to hold the first meeting of the Program Review Committee in 2000.


1.2.3 Core Program

The RAMP Technical Subcommittee is in the process of developing a core monitoring program for review by the Steering Committee. The Technical Subcommittee has provided scientific input for the core program and for the 1999 sampling program. In addition to the Technical Subcommittee, scientists from member organizations (e.g., AENV, DFO) have provided input into the design of the core program.

The core program outlines the main components of the program for each waterbody (i.e., water and sediment quality, fish populations, benthic invertebrates and wetlands vegetation) to provide consistency to the monitoring. It also defines sampling locations and frequencies. However, the program includes flexibility to allow for modification of sampling as issues arise.

If core monitoring results indicate a potential problem, further work will be done to determine if data on the effects are repeatable, and to further characterize the extent of the effect (Figure 1.2). If changes in the aquatic environment are confirmed, then causes will be investigated and mitigation options identified. Once mitigation is implemented, monitoring will continue to ensure that the expected improvement is attained.

Figure 1.2 Core Monitoring Program

(modified from Hodson et al. 1996).

Golder Associates

2 1999 MONITORING PROGRAM

2.1 APPROACH

Historically, water quality monitoring and comparison to guideline criteria (e.g., chemical concentrations, toxicity testing) have been used to evaluate the potential impacts of human activities on aquatic systems. It is also beneficial to monitor biological communities that integrate the effects of complex and varied stressors on receptors (e.g., fish, benthic invertebrates, wetlands vegetation) to ensure there have been no adverse changes in the aquatic ecosystem due to human activities.

A receptor-oriented system stresses the collection of biological data relevant to the assessment of effects on the aquatic ecosystem. Sensitive, biological indicators were chosen in addition to traditional, chemistry-based monitoring to allow early detection of potential effects related to oil sands developments. The collection and analysis of data on these effects will allow the implementation of appropriate mitigation if effects that negatively impact aquatic ecosystems are detected.

The 1999 monitoring program was a continuation of long-term monitoring that began in 1997. It consisted of three main components:

- Water and sediment quality in rivers and some wetlands which are indicators of habitat quality and potential chemical exposure of fish and invertebrates. Water and sediment quality are assessed by chemical analyses and toxicity bioassays.
- Fish populations in rivers which are bioindicators of ecosystem integrity. Emphasis is on regional fish resources and sentinel species.
- Water quality in acid sensitive lakes which is used as an early indicator of potential effects from acid deposition.

To effectively evaluate aquatic ecosystems within the Oil Sands Region, RAMP has focused on four main aquatic systems potentially affected by development activities: 1) Athabasca River; 2) tributaries of the Athabasca River (i.e., Muskeg River and Steepbank River); 3) lakes and wetlands adjacent to developments; and 4) acid sensitive lakes.

Table 2.1 presents a summary of all geographic areas and aquatic components sampled by RAMP in 1999 and in previous years. Details on study design, sampling locations and methods are described in Section 3.

	Sampling					
Waterbody and Component	1997	1998	1999			
			Winter	Spring	Summer	Fall
Athabasca River		•	•	•		
water quality	•	•	•			
sediment quality	•	•				
benthic invertebrates	•					
sentinel fish monitoring (longnose sucker)		•				
sentinel fish monitoring (trout-perch)						•
fish inventory	•	•				•
fish tissue		•				
Athabasca River Delta		•			· · ·	
water quality					•	
sediment quality					•	
mussels (sampling for species identification)					•	
Muskeg River						
water quality	•	•	•	•	•	٠
toxicity testing		•	•	•	•	•
sediment quality	•	•				٠
temperature (continuous during open water)				•	•	٠
benthic invertebrates		•				
sentinel fish monitoring (slimy sculpin)						٠
fish inventory	•					٠
fish fence		•				
Muskeg River Tributaries						
water quality		•	•			٠
sediment quality (Jackpine Creek)	•					
Kearl Lake						
water quality		•				
vegetation	•	•				
Isadore's Lake						
water quality		•				
vegetation	•	•				
Steepbank River						
water quality	•	•	•			
sediment quality	•	•				
benthic invertebrates		•				
fish inventory	•					•
sentinel fish monitoring (slimy sculpin)						•
Shipyard Lake		r	1	1		
vegetation	•	•				
water quality		•		•	•	•
McLean Creek						
water quality						٠
sediment quality						٠
temperature (continuous during open water)					•	•

Table 2.1Overview of RAMP Sampling from 1997 to 1999

	Sampling					
Waterbody and Component	1997	1998		1999		
			Winter	Spring	Summer	Fall
Mackay River						
water quality		•				
sediment quality	•	•				
benthic invertebrates		•				
fish inventory	•					
Tar River						
water quality		•				
sediment quality		•				
Ells River	-			•		
water quality		•				
sediment quality		•				
sentinel fish monitoring (evaluated as reference area)						•
Poplar Creek		•		•		
sediment quality	•					
Acid Sensitive Lakes						
water quality					•	

2.1.1 Water and Sediment Quality

Analysis of water and sediment chemistry provides a direct measure of the suitability of a waterbody to support aquatic life. Changes in water and sediment quality over time may indicate chemical inputs from point and non-point sources. Measured concentrations of chemicals can be compared with water and sediment quality guidelines designed to protect aquatic life. Water and sediment quality surveys also provide valuable supporting data to interpret the results of biological surveys.

The scope of the 1999 water quality surveys was:

- to continue to monitor the same set of water quality parameters analyzed in 1998;
- to resample the mouths of the Steepbank and Muskeg rivers;
- to resample Wapasu and Muskeg creeks;
- to expand seasonal sampling and toxicity testing in the Muskeg River;
- to sample the mouths of tributaries to the Muskeg River (Stanley, Shelley and Jackpine creeks, and the Alsands drain);
- to sample the mouth of McLean Creek;
- to monitor seasonal water temperatures in the Muskeg River, McLean Creek and the Alsands drain; and

Golder Associates

• to sample the Athabasca River near the Embarras River and the Athabasca River Delta, far downstream of current oil sands developments.

The scope of the 1999 sediment quality survey was:

- to continue to monitor the same set of sediment quality parameters analyzed in 1998, including sediment toxicity (i.e., bioassays using benthic invertebrates: *Chironomus tentans*, *Hyalella azteca* and *Lumbriculus variegatus*);
- to resample the mouth of the Muskeg River;
- to sample the mouth of McLean Creek;
- to sample the Athabasca River Delta; and
- to develop a sediment monitoring program for the Athabasca, Muskeg and Steepbank rivers.

2.1.2 Benthic Invertebrate Community

Benthic invertebrate (benthos) monitoring is an essential component of aquatic monitoring programs. Benthic invertebrates form communities that reflect the physical and chemical characteristics of their habitat. They also constitute a food source for many fish species, making them an important feature of fish habitat. Therefore, benthic invertebrate monitoring complements surveys of fish populations, and water and sediment quality, by providing an ecological indicator of the environmental quality. As well, benthic invertebrates are relatively sedentary, and hence are useful in examining spatial trends within a watercourse.

The scope of the 1999 benthic invertebrate program was:

- to collect benthos samples from McLean Creek (to further refine baseline information); and
- to develop a study design for the Athabasca River and tributaries based on data from RAMP 1997 and 1998 benthic surveys, previous surveys in the area, a literature review and consultation with scientific experts.

Sampling of benthos in McLean Creek was attempted in fall 1999. Erosional sites, which are typical habitat in McLean Creek could not be sampled due to low flows. One sample was collected in a depositional site at the mouth. However, this sample was not analyzed, as it was not considered to be representative of the benthic habitat in the creek.

The RAMP Technical Subcommittee is currently developing a benthic invertebrate study design that will be included in the 2000 report. Hence, there is no further discussion of benthic invertebrates in this report.

2.1.3 Fish Populations

Monitoring fish populations is a key component of RAMP for a variety of reasons. Fish integrate the effects of natural and anthropogenic factors and are, therefore an important ecological indicator. Probably the most pertinent reason is that fish are a highly valued component of the aquatic ecosystem. Hence, there is a public and regulatory expectation that fish will be monitored.

Within the Oil Sands Region there are two distinct yet related issues that need to be addressed by the fisheries component of RAMP. Firstly, it is necessary to ensure that fish populations identified as important to subsistence, commercial and sport fisheries are not adversely affected by increased oil sands development. The continued use of available fisheries resources for human consumption is of specific interest. Secondly, it is important to maintain the ecological integrity of the aquatic ecosystems. With regards to fish, it is important to ensure that there are no adverse effects on ecological attributes such as growth, reproduction and survival. Early warning indicators are used to achieve this objective.

The scope of the fisheries component of the 1999 monitoring program was discussed during the RAMP Technical Subcommittee meeting on June 16, 1999. At this time, it was decided that RAMP should continue monitoring the mainstem Athabasca River in 1999, and also initiate fisheries monitoring on the Muskeg and Steepbank rivers. In both instances, sentinel fish species would be used to assess potential effects of stressors (e.g., industrial development) on fish populations. Briefly, the performance (e.g., growth, condition, reproductive parameters) of a sentinel species inhabiting a particular site of interest (e.g., Oil Sands Region) is characterized relative to reference and/or historical performance data. The underlying premise of the approach is that the status of the sentinel species is a reflection of the overall condition of the aquatic environment in which the fish resides (Munkittrick 1992).

2.1.3.1 Athabasca River

Fisheries monitoring on the Athabasca River consisted of two components:

- spring fish inventory; and
- sentinel species monitoring.

Fish inventory surveys are conducted to document presence and relative abundance of fish species within the Oil Sands Region of the Athabasca River. Particular emphasis is placed on walleye, lake whitefish, goldeye and longnose sucker. The Muskeg River Mine Environmental Impact Assessment (EIA) (Shell 1997) and Project Millennium EIA (Suncor 1998) identified these species as Key Indicator Resources (KIRs) for the Athabasca River. Although reduced in scope, the 1999 fish inventory was a continuation of work done in previous years to evaluate possible year-to-year changes in the occurrence and abundance of dominate fish species (i.e., KIR species) within the Oil Sands Region. Data collected over time will be valuable in documenting potential changes in the fish community resident in the Oil Sands Region or utilizing the region on a seasonal basis.

Sentinel species monitoring conducted in 1999 represented a modification to the approach initiated in 1998 (Golder 1999a). Longnose sucker has been used as a sentinel species for monitoring the ecological integrity of the Athabasca River. This species was identified as a KIR species for the Athabasca River in several recent EIAs, and was also used as a sentinel species for pulp mill environmental effects monitoring (EEM) programs within the Athabasca River basin. However, concerns regarding the mobility of longnose sucker (or other large fish species) and therefore the amount of exposure to conditions within the Oil Sands Region have not been fully resolved. Monitoring a second sentinel species was recommended. The Technical Subcommittee decided that RAMP would initiate monitoring on a small-bodied fish species (i.e., trout-perch) that exhibits a smaller home range and reduced potential for large-scale movement (Minns 1995).

2.1.3.2 Muskeg and Steepbank Rivers

Tributaries of the Athabasca River within the Oil Sands Region are included in the monitoring program because they provide important habitat for many fish species, and because some, such as the Muskeg and Steepbank rivers, may be influenced by oil sands development. Fish communities within these rivers could be affected by potential changes in water quality and flow associated with mining activities. In addition to effects on resident species, tributaries have the potential to affect fish populations from the Athabasca River because these areas are important for critical life stages such as spawning, rearing and summer feeding. The Muskeg and Steepbank rivers have been identified as providing important habitats for walleye, Arctic grayling, northern pike, longnose sucker and white sucker (Bond and Machniak 1979; Machniak and Bond 1979).

Sentinel species monitoring on the Muskeg and Steepbank rivers focused on small-bodied fish species. Small fish species have been advocated as sentinel species for these rivers because the forage fish guild has been identified as a KIR for both systems, and they are resident to the tributaries throughout the year (i.e., they receive maximum exposure). Small-bodied species are typically less mobile relative to larger species (Minns 1995), such as pike or sucker, making it easier to select distinct reference and exposure sampling sites in small river systems. The RAMP Technical Subcommittee recommended that tributary monitoring using small-bodied sentinel species (i.e., slimy sculpin) commence in the fall 1999.

2.1.4 Acid Sensitive Lakes

In 1999 it was proposed that lakes representative of the wide range of water chemistry in north-eastern Alberta be selected for a long-term acidification monitoring network under RAMP. The objective of this new RAMP component is to monitor lake chemistry as an early-warning indicator of excessive acidic deposition. Acid-sensitive lakes are expected to show changes in their buffering capacities before soils or vegetation can provide a clear indication that acid limits are being reached. The program was designed as a partnership between RAMP, Al-Pac and Alberta Environment (AENV).

Recent Environmental Impact Assessments (EIAs) for oil sands developments indicate that although SO_2 emissions will remain relatively constant in this region, NO_x emissions will increase as expansion progresses. These emissions can lead to the formation of acidic deposition, which may eventually result in acidification of poorly buffered lakes. Decreases in pH (i.e., increases in H⁺ concentration) may have direct biological impacts, as well as indirect effects through the mobilization of other chemical constituents, notably metals.

Most of Alberta's lakes and streams are well buffered against acidification because they are situated on carbonate-rich bedrock and soils. However, a number of vulnerable waterbodies (i.e., those with low alkalinity) have been identified in certain of areas of the province. Most of these lakes are located in the northern uplands (Birch Mountains, Caribou Mountains, Muskeg Mountain Upland) and the Canadian Shield eco-regions of north-eastern Alberta (Saffran and Trew 1996). Some of these sensitive lakes are mineral systems in which alkalinity, a measure of inorganic buffering generated by the carbonatebicarbonate-carbonic acid equilibrium, is directly linked to the acid neutralizing capacity (ANC). Other northern upland lakes classified as sensitive are highly coloured (i.e., brown water) systems located in watersheds dominated by organic soils. These lakes are often acidified by organic acids originating from peatland vegetation in their watersheds. Their buffering mechanisms may include organic substances and certain metal species. The presence of colour (brown water) is not necessarily indicative of organically buffered systems, since some lakes in the region can be brown coloured but are heavily minerally buffered.

The 1999 field program represented the initial effort to establish the RAMP network. In addition to the above overall objective, specific objectives were to verify that the selection criteria have been met and to establish a baseline data set for the monitoring network, beyond the historical data that were used for the selection of candidate lakes.

2.1.5 Specific Issues

While the RAMP program focuses on a core set of monitoring components, it also has the flexibility to adjust the program to reflect monitoring results, technological advances or community concerns. In 1999, two specific issues were addressed that are not currently part of the core monitoring program. These issues were:

- assessing the potential to include mussels as one of the core monitoring components; and
- addressing community concerns about external abnormalities (e.g., tumours) in fish.

Mussels

Mussels are bivalves that live attached to the substrate. These organisms filter water and suspended sediments and provide a time-integrated response to chemicals in their environment. They have been used in aquatic monitoring programs to evaluate trends in chemical levels.

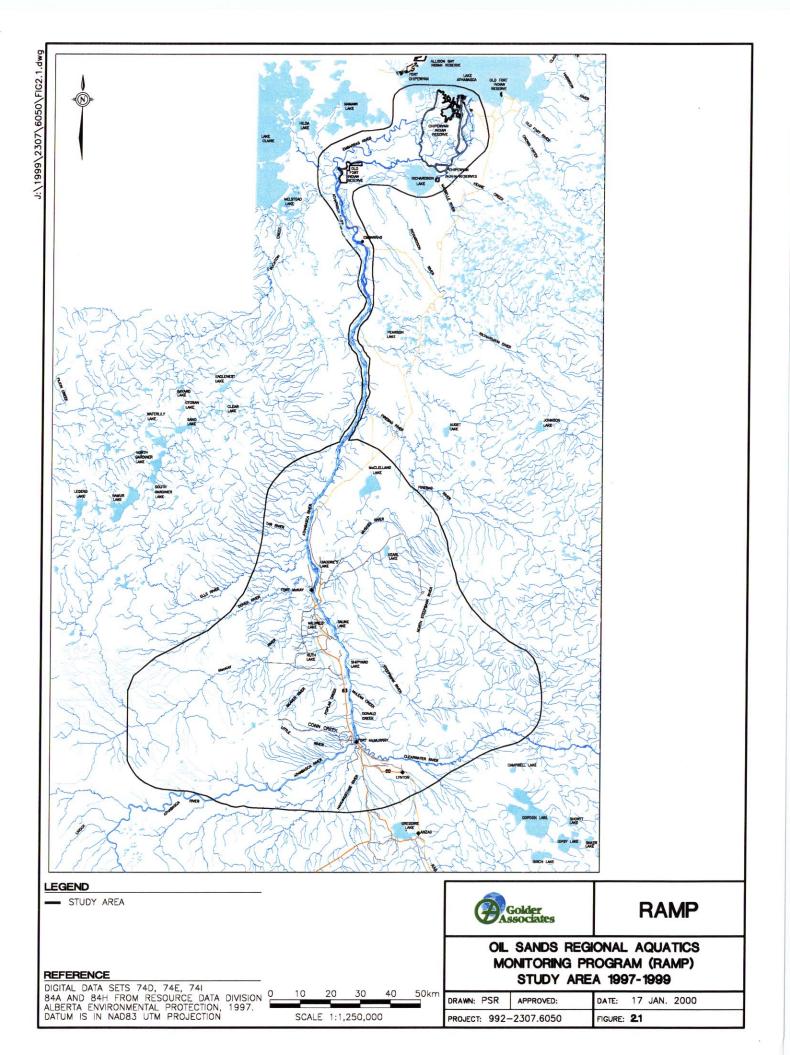
Since freshwater mussels are found in the Athabasca River Delta, it has been suggested that they be included in the core monitoring program. The first step to assessing the feasibility of using mussels in the RAMP program was to identify the distribution and species of mussels that are present in the lower Athabasca River system. Fort Chipewyan residents have indicated that mussels are common in the Athabasca River Delta near Fort Chipewyan. In 1999, mussels were collected from the Athabasca River Delta for species identification. Two species of mussel were documented this year: *Anodonta grandis* and *Lampsilis radiata siliquoidea*. A reconnaissance-level survey was also done in some of the Athabasca River tributaries this fall. To date, mussels have been documented in the MacKay River, but not in the Muskeg or Steepbank rivers.

The Technical Subcommittee is continuing to discuss the potential for using mussels as a monitoring tool for RAMP. Research would need to be conducted to determine if it were feasible and practical to use mussels for monitoring in the Oil Sands Region. RAMP would not adopt this monitoring technique unless research showed that it could be practically applied to monitoring.

External Abnormalities in Fish

In community meetings held in Fort McKay and Fort Chipewyan, community residents raised concerns regarding the presence of external abnormalities in fish. Community residents indicated that they have caught fish with tumours and deformities.

RAMP currently monitors for external abnormalities in fish as part of regular fish inventories and sentinel species monitoring. However, RAMP is also addressing these concerns by providing a mechanism for people in the communities to have fish analyzed should they catch a fish that is deformed or has external abnormalities such as tumours. In 1999 a Fort Chipewyan resident captured a walleye with an external abnormality. This fish was sent by RAMP (through Suncor) for analysis by DFO scientists. The analysis indicated that the fish had a tumour that is naturally occurring in walleye.


A training program for fish health assessments and collection was done in Fort Chipewyan in July 1999. The training program is currently being expanded to include representatives from all the communities that are members of RAMP. These representatives will be trained to conduct a basic fish health assessment, sample the fish and ship it to a lab for analysis. DFO will provide the analytical services on fish samples.

2.2 RAMP STUDY AREA

The study area for RAMP is similar to the regional study area developed for recent oil sands EIAs except that it extends farther downstream to include the Athabasca River Delta (Figure 2.1). The study area includes a number of watersheds that drain into the Athabasca River. As well, RAMP initiated acid sensitive lake monitoring in 1999. Hence, the study area also includes sensitive lakes that are within areas potentially affected by acidifying air emissions resulting from oil sands activities as well as control lakes outside of the deposition area (see Section 3.4, Figure 3.5).

In 1999, monitoring activity was focused in the following areas:

- Watersheds of the Muskeg and Steepbank rivers;
- McLean Creek;
- Ells River (potential reference tributary for fish);
- Athabasca River;

- Athabasca River Delta;
- Shipyard Lake; and
- Acid Sensitive Lakes.

2.3 CLIMATIC AND HYDROLOGIC CONDITIONS

Monitoring of climatic and hydrologic conditions in the Oil Sands Region is accomplished via the Climatic and Hydrologic Monitoring Program. This program, which is currently operated by Suncor, Syncrude, Shell and Mobil has been in place since 1995. An annual report on the program will be issued in the first quarter of 2000. Summaries of historical information as well as data collected during 1999 will be included in the report (Golder 2000). Since changes in flows and water levels may affect both the success and the results of RAMP sampling throughout the study area, a summary of the 1999 conditions is provided as background information in this section.

The analysis of available data indicates that maximum daily stream discharges in 1999 were significantly lower than the long-term mean of annual maximum daily values (Table 2.2). Minimum daily discharges were comparable to the mean for most stations, though the minimum daily discharge in the Athabasca River in 1999 was relatively low and had a drought return period of 15 years.

Stream	Athabasca R.	Steepbank R.	Muskeg R.	Jackpine Cr.	MacKay R.	Firebag R.
Station ID	07DA001	07DA006 ^(a)	07DA008 ^(a)	S2 ^(a)	07DB001 ^(a)	07DC001 ^(a)
Period of Record	40 Years	26 Years	26 Years	23 Years	27 Years	24 Years
		М	aximum Mean	Daily Discharge)	
1999 value (m³/s)	2040	5.62	3.84	0.178	7.72	43.5
average recorded (m ³ /s)	2460	35.6	26.5	7.54	126	104
maximum recorded (m ³ /s)	4700	81.0	66.1	17.2	339	236
flood return period (yr)	< 2 years	< 2 years	< 2 years	< 2 years	< 2 years	< 2 years
		Ν	inimum Mean	Daily Discharge	1	
1999 value (m ³ /s)	97.5	0.417	0.225	0.000	0.173	9.14
average recorded (m ³ /s)	136	0.294	0.277	0.007	0.352	8.00
minimum recorded (m ³ /s)	92	0.022	0.095	0.000	0.023	4.24
drought return period (yr)	15 years	< 2 years	4 years	n/a	7 years	< 2 years

 Table 2.2
 Maximum and Minimum Mean Daily Discharges, RAMP Study Area

Source: Environment Canada, Water Survey Branch; Golder (2000).

Note ^(a) – Discharge data available only for period March to October.

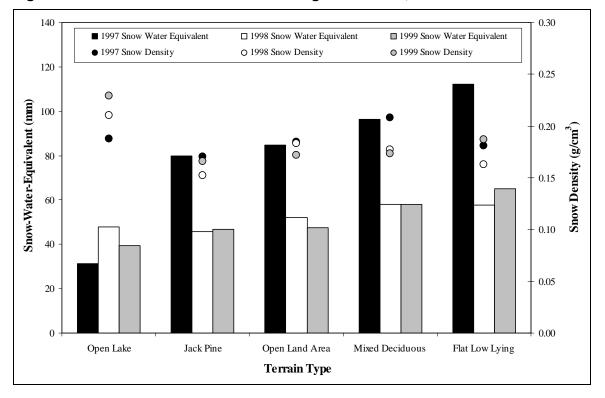
The cumulative flow volume for the period from March to September 1999 (i.e., spring melt to late summer) was much lower than normal, with drought return periods of between 10 and 40 years (Table 2.3). For all of the gauged streams 1999 was drier than 1998, and for Jackpine Creek and the Steepbank and Muskeg rivers it was the driest year on record.

Field observations (Golder 2000) indicate that 1999 was a dry year in the Muskeg River and adjacent basins, as was 1998. Normally saturated muskeg areas were relatively dry and many upland streams ceased to flow by mid-summer.

Table 2.3Cumulative Streamflow Volumes, RAMP Study Area, March to
September

Stream	Athabasca R.	Steepbank R.	Muskeg R.	Jackpine Cr.	MacKay R.	Firebag R.
Station ID	07DA001	07DA006	07DA008	S2	07DB001	07DC001
Period of Record	40 Years	26 Years	26 Years	23 Years	27 Years	24 Years
1999 value (dam ³)	12,457,498	36,587	18,151	1,000 ^(a)	28,526	405,669
maximum recorded (dam ³)	25,279,862	273,634	187,146	59,051	904,734	903,836
average recorded (dam ³)	16,818,987	134,019	104,684	27,402	430,574	605,260
minimum recorded (dam ³)	11,888,035	36,587	18,151	1,000 ^(a)	28,526	344,469
drought return period (yr)	12 years	40 years	40 years	40 years	40 years	12 years

Source: Environment Canada, Water Survey Branch; Golder (2000).


Note ^(a) – 1999 value estimated from limited (April to August) data set.

The following conditions contributed to the extremely low streamflows observed in 1999:

 Low snow accumulation: Cumulative winter snowfall at Fort McMurray Airport in 1999 was the tenth lowest in 53 years of record (winter 1944/45 to 1998/99; no data available for winter 1991/92 to 1993/94). The measured snowfall for the winter of 1998/99 was 981 mm, compared to an average winter snowfall of 1506 mm. Measured snowfall for the winters of 1996/97 and 1997/98 were 937 mm and 714 mm, respectively. The accumulated snow depths measured in the Muskeg River basin in March 1999 were similar to those measured in 1998 and were approximately 65% of those measured in 1997 (Figure 2.2).

- Low rainfall: 1999 was the tenth driest in the 56 years of record (1944 to 1999) derived for Fort McMurray Airport. Total rainfall measured at the Aurora Climate Station (Figure 2.3) was somewhat higher in 1999 than 1998 (303 mm in 1999 versus 212 mm in 1998) but lower than that measured in 1996 and 1997 (303 mm in 1999 versus 474 mm in 1996 and 377 mm in 1997).
- Antecedent conditions: The preceding dry year in 1998 left the muskeg with capacity to store the 1999 snowmelt and rainfall. This resulted in lower than normal runoff during spring melt and summer rain events.

Figure 2.2 Snow Accumulation in Muskeg River Basin, 1997 - 1999

Source: (Golder 2000).

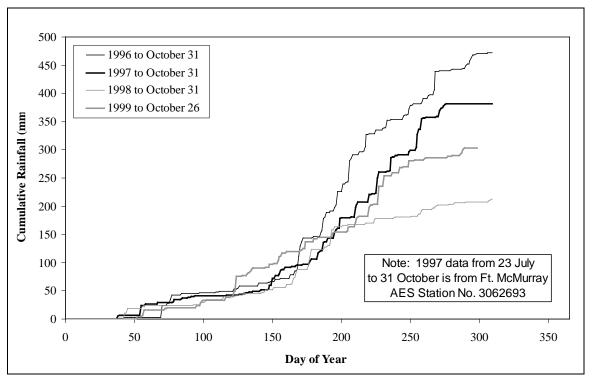


Figure 2.3 Cumulative Annual Rainfall at Aurora Climate Station, 1996 - 1999

Source: (Golder 2000).

Calculated potential and areal evapotranspiration for 1999 were found to be relatively normal and are not thought to be responsible for low streamflows in 1999 (Table 2.4).

 Table 2.4
 Calculated Annual Evapotranspiration at Aurora Climate Station

	Calculated Annual Evapotranspiration (mm		
	Potential	Areal	
Aurora Climate Station 1999	750	355	
Aurora Climate Station 1998	852	387	
Fort McMurray Airport 1953-1993 Average	782	312	

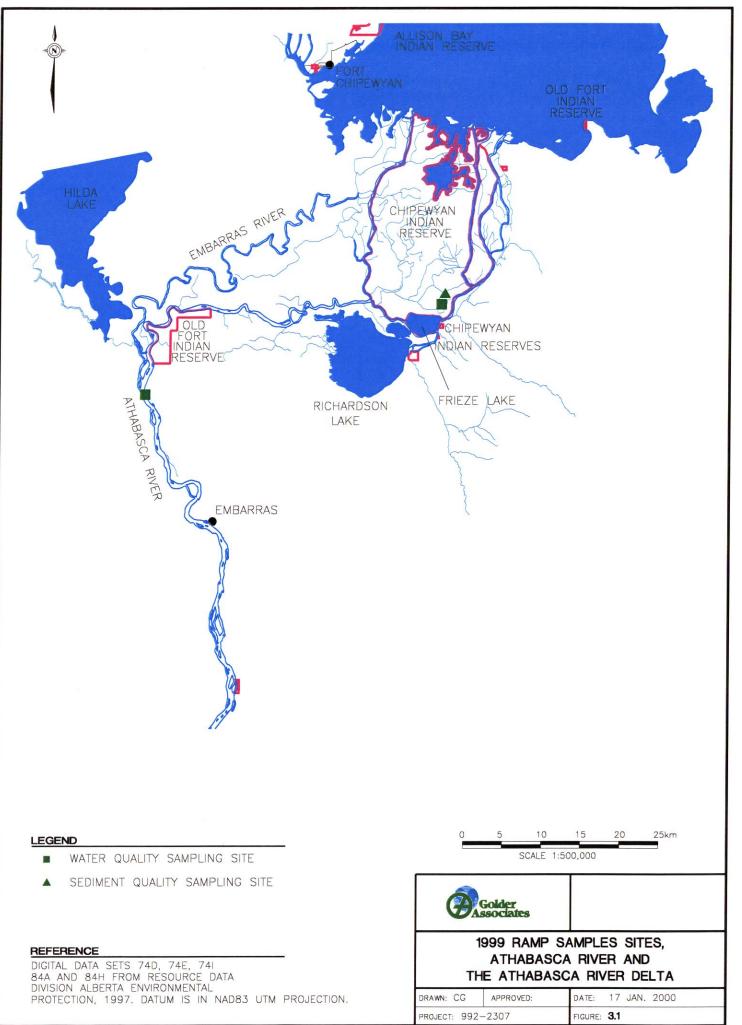
Source: Golder (2000).

3 METHODS

3.1 ATHABASCA RIVER

3.1.1 Water and Sediment Quality

In 1999, water samples were collected in the Athabasca River near the Embarras River (March 5, 1999) and in the Athabasca River Delta (July 31, 1999). A composite sediment sample was collected from the Athabasca River Delta on July 31, 1999. Work in the river delta was completed in collaboration with Environment Canada. Sample sites are illustrated in Figure 3.1.


3.1.1.1 Field Methods

Water Sampling

On March 5, 1999, four evenly spaced holes were drilled through the ice on a transect across the Athabasca River, near the Embarras River. Two litres of water were collected from each hole using a clean, triple-rinsed 1 L glass bottle and combined to form one composite sample. In the Athabasca River Delta, one composite sample was created by combining water collected from Big Point, Goose Island and Embarras channels and an unnamed side channel. Approximately two litres of water were collected from each channel using a clean, triple-rinsed 1 L glass bottle. In both sampling events, water was collected from a depth of about 30 cm.

Each composite sample was split into two parts. One portion was shipped to Enviro-Test Laboratories (ETL) in Edmonton, Alberta for analysis of conventional parameters, major ions, nutrients, total and dissolved metals, recoverable hydrocarbons and naphthenic acids. The other portion was sent to HydroQual Laboratories (HydroQual) in Calgary, Alberta, for chlorophyll *a* and Microtox[®] analysis. Descriptions of the analytical methods used by each laboratory are provided in Appendix I.

Field measurements, including dissolved oxygen (DO), pH, conductivity and temperature, were taken at the site near the Embarras River. For accuracy, all field probes were calibrated before use. As a result of equipment malfunction, field measurements could not be collected in the Athabasca River Delta. All samples were collected, preserved, stored and shipped in accordance with Golder Associates Technical Procedure 8.3-1 (Golder 1999b). Exact sample locations were determined by Global Positioning System (GPS).

Sediment Sampling

Sediment samples were collected in the Athabasca River Delta from the same location as the water quality samples. Sediments were taken from the top 3 cm of the river bottom using a Ponar grab sampler. Four grab samples, one from each of the aforementioned channels, were mixed to form one composite sample, which was then split into three parts. One part was shipped to ETL and analyzed for carbon content, particle size, recoverable hydrocarbons and total metals. Another part of the composite sample was sent to HydroQual for toxicity testing using a midge larvae (*Chironomus tentans*), an amphipod (*Hyalella azteca*) and an oligochaete worm (*Lumbriculus variegatus*). The final portion was sent to AXYS Analytical Services Ltd. (AXYS) in Sidney, B.C., and analyzed for polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs. Descriptions of the methods used by each laboratory can be found in Appendix I. Sediments were collected, preserved, stored and shipped in accordance with Golder Associates Technical Procedure 8.2-2 (Golder 1999b).

3.1.1.2 Data Analyses

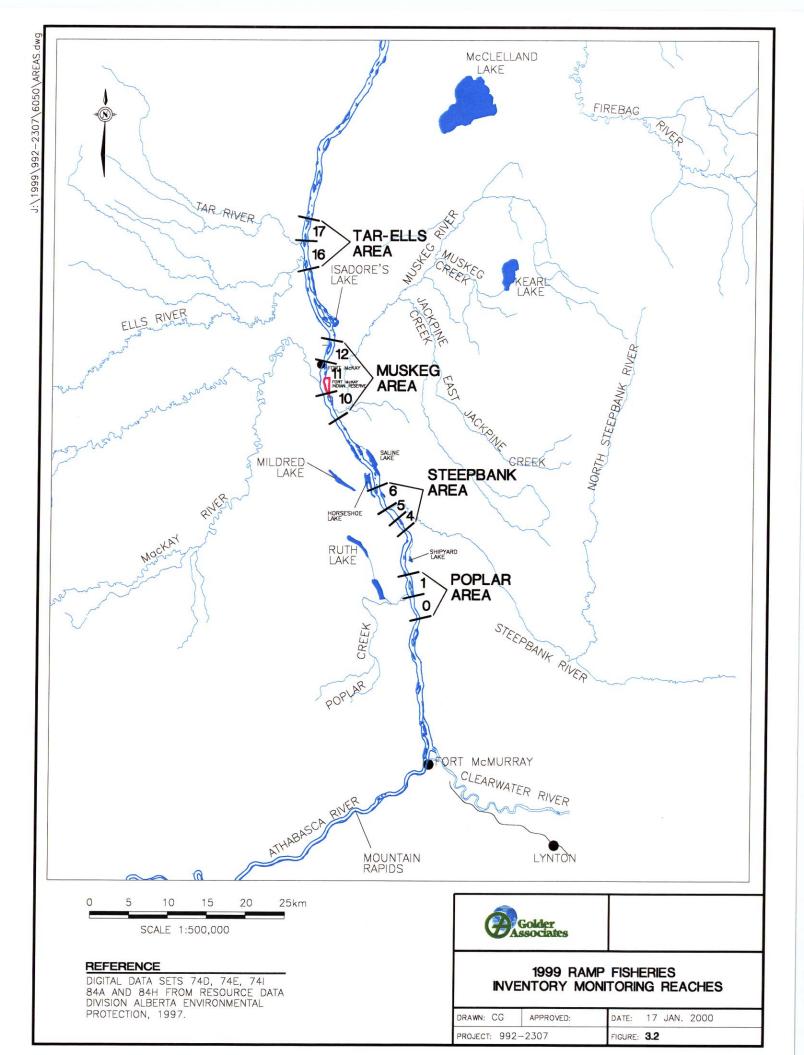
Qualitative comparisons were used to characterize water and sediment quality in the Athabasca River near the Embarras River and the Athabasca River Delta. Historical information, where available, was summarized, and historical median, minimum and maximum values were developed (Appendix II). Information collected in 1999 was then compared qualitatively to the historical median values associated with each of the 1999 sampling sites. The 1999 and historical median values were also compared to relevant water and sediment quality guidelines. Trends in the complete data set were examined, and differences between new information and historical data were identified using the following criteria:

- a pH change of greater than 0.5 pH units;
- a minimum of an order of magnitude change for parameters reported with only one significant digit (e.g., 0.1 mg/L in 1999 versus a historical median concentration of 1 mg/L);
- a relative change of greater than 100% for parameters with more than one significant digit (e.g., 180 mg/L in 1999 versus a historical median concentration of 90 mg/L); or
- a relative change of greater than 40% for parameters with more than one significant digit, where 1999 concentrations were higher or lower than historical maximum or minimum, respectively.

These criteria are based on professional judgement and serve as general guidelines by which potentially significant changes could be identified.

Increased statistical analysis of the water quality data will be incorporated in future years, as the amount and number of years of data increases.

3.1.2 Fish Populations


The 1999 fisheries component of RAMP was a continuation, as well as a refinement, of work initiated in 1997 (Golder 1998a) and 1998 (Golder 1999a). The objectives of the 1999 fisheries studies were to:

- obtain data on Key Indicator Resource (KIR) fish species of the Athabasca River to examine temporal variability in species composition/abundance and population parameters such as length-at-age, condition and length frequency distributions; and
- further develop sentinel fish species monitoring for the Athabasca River by evaluating the use of a small-bodied fish species as an additional sentinel species to longnose sucker (*Catostomus catostomus*).

The KIR fish inventory focused on the same oil sand river reaches previously surveyed in 1998 (Golder 1999a). Specifically, fish were surveyed in the Poplar Area (Reaches 0 and 1), the Steepbank Area (Reaches 4, 5 and 6), the Muskeg Area (Reaches 10, 11 and 12), and the Tar-Ells Area (Reaches 16 and 17) (Figure 3.2). The study region for sentinel species monitoring was more general, but included three specific areas: 1) a reference area located upstream of the Suncor Energy Inc. (Suncor) facilities and downstream of Fort McMurray; 2) an exposure area immediately downstream of the Suncor discharge; and 3) a second exposure area immediately downstream of the confluence of the Muskeg River.

3.1.2.1 Fish Inventory

For a variety of logistical reasons, the fish inventory was not originally part of the 1999 RAMP fisheries component. It was later decided that, at minimum, inventory data during the spring would be valuable to document the presence and relative abundance of dominant fish species (e.g., KIR species) in the Oil Sands Region, particularly spring spawning fishes. The survey was conducted entirely by Syncrude Canada Ltd. (Syncrude) as an in-kind contribution to RAMP.

Environment Canada through the Program for Energy Research and Development (PERD) initiative collaborated with Syncrude to conduct additional sampling within the Oil Sands Region in the fall. Electrofishing was conducted to collect longnose sucker (sentinel species) from areas generally corresponding to the Poplar and Steepbank monitoring reaches. Although limited with regards to study area and sampling bias, incidental catch data provided some information regarding species composition and catch-per-unit-effort (CPUE) during the fall season. CPUE is measured as the number of fish captured plus the number of fish observed divided by the unit of time (e.g., seconds) of active fishing.

Field Collections

The RAMP inventory was done at all four sampling areas from May 10-14, 1999. Fish were captured using an electrofishing boat (Smith-Root model SR18). Electrofishing was conducted along the right and left downstream bank of each sampling reach. Stunned fish were dip-netted from the water and placed in a flow-through live well prior to processing. CPUE was calculated to determine the relative abundance of fish species captured in each reach. Collection operations were consistent with the Alberta Environment Fisheries Management Division policy respecting injury to fish (AEP 1995).

All captured fish were identified to species and enumerated. Species codes and common/scientific names are presented in Table 3.1. Fork length (± 0.1 cm) and body weight (± 0.1 g) were measured for large fish species. For smaller species (e.g., flathead chub, emerald shiner), only fork length was measured. Fish were also examined for external pathology according to Golder Technical Procedure 8.1-3 (Golder 1999b). If discernible, sex and state of maturity of each fish were determined by external examination. Non-lethal ageing structures were taken from walleye (pelvic spine, fin ray), goldeye (fin ray), lake whitefish (scales) and longnose sucker (fin ray) according to methods outlined in MacKay et al. (1990).

Data Analyses

When sample sizes were adequate (i.e., n > 100), size and age distributions for KIR species were generated and compared to distributions from previous years. Size-at-age relationships were also compared to spring data from 1997 and 1998 (i.e., years with adequate age data). Size-at-age was generated as an estimate of fish growth. Because condition factor varies seasonally and by gender (particularly during spawning season), condition of KIR species could not be accurately estimated using data from the spring inventory.

Statistical analysis was done using SYSTAT[®] statistical software (Wilkinson 1990). Analysis of covariance (ANCOVA) was used to compare size-at-age (length vs. age) among years.

Golder Associates

Table 3.1Common Name, Scientific Name and Species Code of Fish from the
Oil Sands Region, Athabasca River

Species Common Name	Scientific Name	Code ^(a)
Arctic grayling	Thymallus arcticus	ARGR
brook stickleback	Culaea inconstans	BRST
bull trout	Salvelinus confluentus	BLTR
burbot	Lota lota	BURB
cisco	Coregonus artedi	CISC
emerald shiner	Notropis atherinoides	EMSH
fathead minnow	Pimephales promelas	FTMN
finescale dace	Phoxinus neogaeus	FNDC
flathead chub	Platygobio gracilis	FLCH
goldeye	Hiodon alosoides	GOLD
lowa darter	Etheostoma exile	IWDR
lake chub	Couesius plumbeus	LKCH
lake whitefish	Coregonus clupeaformis	LKWH
longnose dace	Rhinichthys cataractae	LNDC
longnose sucker	Catostomus catostomus	LNSC
mountain whitefish	Prosopium williamsoni	MNWH
ninespine stickleback	Pungitius pungitius	NNST
northern pike	Esox lucius	NRPK
northern redbelly dace	Phoxinus eos	NRDC
pearl dace	Semotilus margarita	PRDC
river shiner	Notropis blennius	RVSH
shiner species	Notropis sp.	SH Sp.
slimy sculpin	Cottus cognatus	SLSC
spoonhead sculpin	Cottus ricei	SPSC
spottail shiner	Notropis hudsonius	SPSH
sucker (unidentified)	Catostomus sp.	Su. Sp.
trout-perch	Percopsis omiscomaycus	TRPR
walleye	Stizostedion vitreum	WALL
white sucker	Catostomus commersoni	WHSC
yellow perch	Perca flavescens	YLPR
unidentified		UNID

^(a) Coding system follows recommendations by MacKay et al. (1990).

3.1.2.2 Sentinel Fish Species Monitoring

Sentinel species monitoring for the Athabasca River focused on assessing the whole-organism response of trout-perch (*Percopsis omiscomaycus*) exposed to conditions potentially influenced by oil sands development. Trout-perch was selected *a priori* as a suitable sentinel species for the Oil Sands Region because:

• it is abundant and widely distributed within the Oil Sands Region (Bond 1980; Golder 1998a, 1999a);

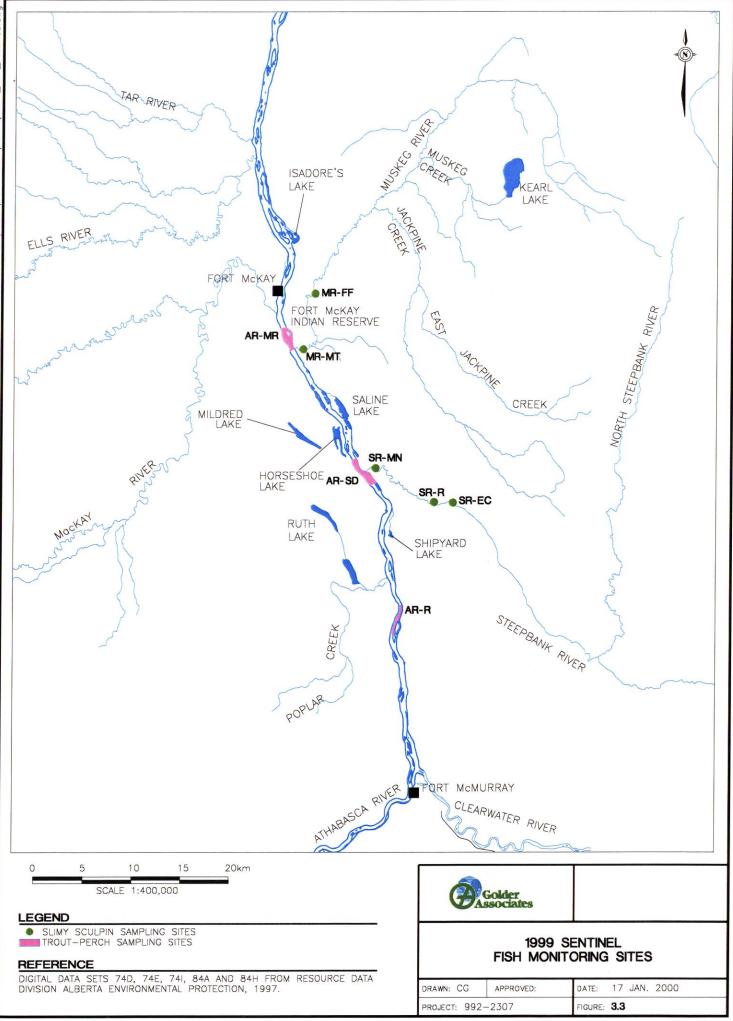
- it is resident in the lower Athabasca River throughout the year (Bond 1980) and, therefore, exposed to oil sands-related stressors year-round;
- other studies on the Athabasca River have been done using trout-perch as a sentinel species (Spafford 1999); and
- gonadal development of trout-perch in the fall is sufficiently advanced to measure reproductive parameters such as gonad size, fecundity, and *in vitro* sex hormone production (Gibbons et al. 1998; Spafford 1999).

Final confirmation regarding the suitability of trout-perch as the sentinel species was dependent on capture success during the fall field study.

Monitoring work on trout-perch was a collaborative initiative between RAMP and PERD, with additional in-kind support provided by Syncrude and Suncor.

Fish Collections

Table 2.2


The field work on the Athabasca River was conducted during September 12-17, 1999. Fish were collected from three sites (Figure 3.3). The general location and UTM coordinates of each sampling site are provided in Table 3.2. Although there was some variation in bank type, all sites consisted of low velocity habitat and substrate dominated by sand/silt mixed with small to medium cobble (Appendix III). The Athabasca River downstream of the confluence of the Muskeg River (Site AR-MR) was moderately different in that the shallow littoral zone was wider than at the reference site and the site downstream of Suncor (sites AR-R and AR-SD).

Constal Location and UTM Co-ordinates of Sampling Sites for Trout

	perch (<i>Percopsis omiscomaycus</i>), Athabasca River, Fall 1999
I able 3.2	General Location and OTM Co-ordinates of Sampling Sites for Trout-

Site	General Location	UTMs ^(a) of Sampling Reach			
AR-R	Reference site approx. 12 km upstream from Suncor, right upstream bank of river in the vicinity of the Northland Forest Products Ltd. sawmill (no known discharge).	U/S: 473465 E / 6302829 N D/S: 473414 E / 6308161 N			
AR-SD	Exposure site immediately downstream of Suncor's discharge and extending to just past Syncrude's water intake, right upstream bank of river.	U/S: 471925 E / 6317684 N D/S: 469411 E / 6321820 N			
AR-MR	Exposure site immediately downstream of the confluence of Muskeg River, left upstream bank of river. Majority of sampling at Lougheed Bridge.	U/S: 463372 E / 6332074 N D/S: 462326 E / 6335050 N			

^(a) Universal Transverse Mercator (UTM) taken at the upstream (U/S) and downstream (D/S) boundary of each sampling reach.

Fish were collected using a Smith-Root SR-18 electrofishing boat as well as a small-mesh beach seine (7 m x 1.2 m x 0.5 cm mesh size) along the slower margins of the river. Seining occurred during both day and night hours (easily accessible sites). Sampling was conducted following detailed methods outlined in Golder Technical Procedure 8.1-3 (Golder 1999b). All captured fish (including incidental species) were identified and enumerated.

Trout-perch were transported live to the on-site laboratory in aerated buckets, where they were immediately transferred to a larger aerated tank (40 L). Because *in vitro* production of sex steroids may be altered by handling and confinement stress (Jardine 1994), fish were held for 3-4 h prior to biomarking in an effort to standardize holding/travel time among sampling sites.

Each fish was rendered unconscious by concussion, followed by spinal severance, and measured for total length (± 0.1 cm), fork length (± 0.1 cm), body weight ($\pm 0.01g$), carcass (i.e., eviscerated) weight ($\pm 0.01g$), gonad weight ($\pm 0.001g$) and liver weight ($\pm 0.001g$). Otoliths and scales were removed from each fish for ageing. Otoliths were aged using the "crack-and-burn" procedure. Briefly, the otolith is cut along the transverse axis and held in an alcohol flame to char the cut surface and enhance the visual identification of growth annuli. Scales were used as secondary ageing structures and read, when required, from acetate imprints. An external and internal pathology examination was also conducted for each fish. All fish were processed according to methods described in Golder Technical Procedure 8.15-0 (Golder 1999b).

Whole livers were placed in a cryovial and frozen immediately in liquid nitrogen and stored at -80 °C pending mixed function oxygenase (MFO) analyses. This analyses was done as part of the PERD research lead by J. Parrott and J. Sherry, Environment Canada, National Water Research Institute, Burlington, Ontario. Induction of MFO activity was measured as a positive indicator of exposure to inducing compounds present in the Oil Sands Region (e.g., PAH compounds, chlorinated aromatic hydrocarbons and complex mixtures such as petroleum oils).

A sample of ovarian tissue from mature females was weighed (± 0.001) and preserved in Gillson's solution for fecundity analyses. The total number of eggs per sample was counted, and these results were used to estimate the total number of eggs per fish (total fecundity). Sub-samples of gonadal tissues from both male and female trout-perch were also taken to measure the *in vitro* production of sex steroids. The *in vitro* production of steroids has been used as a surrogate measurement of circulating blood levels of sex steroids in fish (McMaster et al. 1995). This technique is particularly useful for small fishes where the total volume of whole blood is insufficient to measure circulating sex steroids.

Steroid analyses were done as part of the M.Sc. thesis research of G. Tetreault from the University of Waterloo, Waterloo, Ontario as part of Environment Canada's PERD research.

At the time of writing this report, both MFO and *in vitro* steroid assays were ongoing and data were not available for inclusion.

Data Analyses

Statistical analysis of sentinel fish species data was done using SYSTAT[®] statistical software (Wilkinson 1990). Analysis of Variance (ANOVA) was used to compare length, weight and age estimates among sites. Estimates of size-at-age (length vs. age), condition (carcass weight vs. length), gonad size, fecundity and liver size were evaluated using ANCOVA. With the exception of size-at-age and condition, carcass (i.e., eviscerated) weight was used as a covariate to adjust for any differences in body size. Using carcass weight instead of body weight eliminated possible confounding effects of altered organ weight (e.g., gonad weight, liver weight) on the interpretation of variables related to body weight. An assumption of the ANCOVA model is that the slopes of the regression lines are equal between regions. Therefore, differences in slopes were tested prior to conducting the ANCOVA. Generally, ANCOVA is fairly robust even when slopes are not equal, so slopes were considered different when p<0.01 (Paine 1998). Data were \log_{10} transformed where appropriate and sexes were analyzed separately.

Using linear orthogonal contrasts (Hoke et al. 1990), statistical analyses were conducted to compare fish performance between:

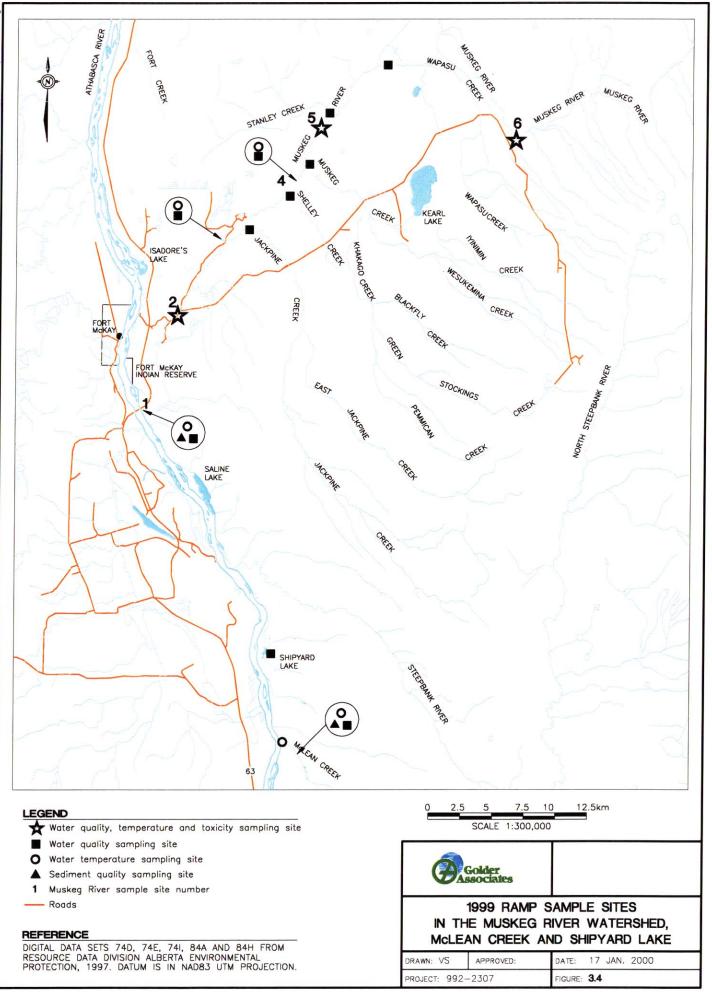
- reference site vs. exposure site downstream of the Suncor discharge;
- exposure site downstream of the Suncor discharge vs. exposure site downstream of the Muskeg River confluence; and
- reference site vs. exposure site downstream of the Muskeg River confluence.

To control experiment-wise error, a significance level of p=0.017 (i.e., α /no. of comparisons, 0.05/3) rather than p=0.05 was used (i.e., Bonferroni's adjustment).

Data were initially screened for potential outliers by visual examination of scatterplots and box plots. The procedure for removing outliers was based on the evaluation of Studentized Residuals (SR). Observations more than four standard deviations (i.e., SR>4) from the cell mean were removed and the analysis run again. If any new outliers (SR>4) occurred, they were also removed and the

analysis was redone. No further outliers were deleted after this point. Adopting SR>4 as a cut-off is considered conservative, as greater than 99% of Studentized residuals were expected to have lower values (Grubbs 1971).

Because this is the first time RAMP has focused on trout-perch as a sentinel species, power analysis was done to evaluate the adequacy of sample sizes for detecting potential differences in fish performance. This information is valuable for refining the sampling design for subsequent sentinel monitoring surveys in future years. Specifically, power analysis was used to estimate the appropriate sample size required to detect a given effect size (or difference in performance between sites). Because the study design consists of three sites, simple power equations comparing two samples cannot be used. Cohen (1988) provides comprehensive methods for power analyses for more than two samples, and for a variety of statistical tests (e.g., ANOVA, ANCOVA). Power analyses were conducted using G*Power software (Faul and Erdfelder 1992), which performs computations based on methods described by Cohen (1988).


The effect size or difference one wishes to detect is not easily defined. The Environmental Effects Monitoring program for the pulp and paper industry have set an effect size of $\pm 25\%$ difference in gonad weight (Environment Canada, 1997). For the purposes of refining the RAMP study design, parameter-specific sample sizes were estimated for an effect size of 20, 30, and 50% (i.e., differences between sites). The mean squared error (MSE) term from the ANOVA or ANCOVA statistical model provided the estimate of among-site-variance for each fish parameter.

3.2 TRIBUTARIES OF THE ATHABASCA RIVER

3.2.1 Water and Sediment Quality

In 1999, RAMP continued monitoring the Steepbank River, Muskeg River, Muskeg Creek and Wapasu Creek, all of which had been monitored in 1997 and 1998. Stanley, Shelley, Jackpine and McLean creeks, and the Alsands Drain were added to RAMP in 1999 (Figure 3.4). Water and/or sediment samples were collected from each sample site in accordance with the sampling schedule summarized in Table 3.3. Water temperatures in the Muskeg River and the Alsands Drain were monitored throughout the spring, summer and fall of 1999. Water temperatures in McLean Creek were monitored in the summer and fall of 1999. Fall sampling in the Muskeg River watershed was completed in collaboration with Alberta Environment (AENV). RAMP also worked with AENV in the summer of 1999 in a test of laboratory quality assurance/quality control (QA/QC) procedures (see Section 4).

Waterbody	Sample Location	Short Title	Sample Media	Sample Date
Steepbank River	mouth	STR-1	water	March 4 (winter)
Muskeg River	mouth	MUR-1	water	October 20 (fall) ^(a)
			sediment	October 20 (fall) ^(a)
	upstream of the Canterra Road crossing	MUR-2	water	March 3 (winter) May 5 (spring) July 13 (summer) October 18 (fall)
	upstream of Shelley Creek	MUR-4	water	October 20 (fall)
	downstream from	MUR-5	water	March 2 (winter)
	Stanley Creek			May 6 (spring)
				July 13 (summer)
				October 19 (fall)
	upstream of Wapasu	MUR-6	water	March 4 (winter) ^(b)
	Creek			May 5 (spring)
				July 13 (summer)
				October 18 (fall)
Alsands Drain	mouth	ALD-1	water	October 19 (fall) ^(a)
Jackpine Creek	mouth	JAC-1	water	October 19 (fall) ^(a)
Shelley Creek	mouth	SHC-1	water	October 19 (fall) ^(a)
Muskeg Creek	mouth	MUC-1	water	October 19 (fall) ^(a)
Stanley Creek	mouth	STC-1	water	October 19 (fall) ^(a)
Wapasu Creek	Canterra Road crossing	WAC-1	water	March 2 (winter) October 18 (fall)
McLean Creek	mouth	MCC-1	water	September 23 (fall)
			sediment	September 23 (fall)

Table 3.31999 Water and Sediment Sampling Schedule for Athabasca River
Tributaries

^(a) Joint sample collection by RAMP and AENV.

^(b) River was completely frozen; no sample was taken.

3.2.1.1 Field Methods

Water Sampling

Water samples were collected from the centre of the Steepbank and Muskeg rivers and McLean Creek, approximately 100 m upstream of the Athabasca River. Water samples from the mainstem and upper portions of the Muskeg River, the remaining tributaries and the Alsands Drain were also collected from the centre of each watercourse, 50 to 100 m upstream of the stream mouth and/or access road. Grab samples were collected at each site from a depth of approximately 30 cm.

All samples were preserved, stored and shipped to ETL for analysis of conventional parameters, major ions, nutrients, total and dissolved metals,

Golder Associates

recoverable hydrocarbons and naphthenic acids. Water samples from these sites were also sent to HydroQual for chlorophyll *a* and Microtox[®] analysis. Toxicity testing with algae (*Selenastrum capricornutum*), water flea (*Ceriodaphnia dubia*) and fathead minnow was also completed by HydroQual for all water samples taken from sample sites 2, 5 and 6 on the Muskeg River (see Figure 3.4 for site locations) and the winter water sample collected from Wapasu creek.

Field measurements, including DO, pH, conductivity and temperature, were taken during each sampling event. Exact locations of sampling sites were determined using a GPS unit. All samples were collected, preserved, stored and shipped in accordance with Golder Associates Technical Procedure 8.3-1 (Golder 1999b).

Thermographs

Thermographs were installed at five locations in the Muskeg River and at one location in the Alsands Drain between May 5 and 6, 1999. Two thermographs were installed in McLean Creek on July 22, 1999 (Table 3.4). Thermographs were programmed to record water temperatures every 20 minutes. They were placed in areas where water depths exceeded 1 m at the time of installation and were covered with perforated PVC tubing. Six of the eight thermographs were retrieved in October. The two remaining thermographs were downloaded in the fall and reset to collect winter temperature data (Table 3.4).

Table 3.4Thermograph Locations in 1999

Waterbody	Site	Installation Date	Retrieval Date
Muskeg River	river mouth	May 5	October 20
	upstream of the Canterra Road crossing	May 5	October 18 ^(a)
	upstream of Shelley Creek	May 6	October 20
	downstream from Stanley Creek	May 6	October 20 ^(a)
	upstream of Wapasu Creek	May 5	October 18
Alsands Drain	near mouth	May 5	October 19
McLean Creek	near mouth	July 22	October 23
	100 m upstream of mouth	July 22	October 23

^{a)} Data downloaded on this day, but thermograph left in place to record winter water temperatures.

Sediment Sampling Methods

Sediment samples were collected from the Muskeg River and McLean Creek approximately 100 m upstream of the Athabasca River. Sediment samples were collected close to shore in depositional areas. Sediments were taken from the top 3 cm of the river bottom using an Eckman grab sampler. Four to six individual samples were collected at each sampling location and mixed to form one composite sample for the site.

The McLean Creek composite sample was split into three parts and shipped to ETL, HydroQual and AXYS for analysis of the same parameters described in Section 3.1.1.1. The Muskeg River composite sample was split into four parts; three parts were shipped to ETL, HydroQual and AXYS for analysis of the same parameters described in Section 3.1.1.1. The remaining portion was sent to Alberta Research Council's Vegreville laboratory (ARCV) for a duplicate PAH analysis (see Section 4)

3.2.1.2 Data Analyses

Qualitative comparisons were used to characterize water and sediment quality in the Athabasca River tributaries. Historical information, where available, was summarized, and historical median, minimum and maximum values were developed (Appendix II). Information collected in 1999 was then compared qualitatively to the historical median values associated with each of the 1999 sampling sites. The 1999 and historical median values were also compared to relevant water and sediment quality guidelines. Trends in the complete data set were examined, and differences between new information and historical data were identified using the criteria described in Section 3.1.1.2. Increased statistical analysis of the water quality data will be incorporated in future years, as the amount and number of years of data increases.

3.2.2 Fish Populations

The objective of the 1999 tributary fisheries program was to initiate sentinel fish species monitoring on the Muskeg and Steepbank rivers using a small-bodied fish species. Monitoring focused on at least three specific study areas: 1) an exposure area located on the Muskeg River downstream of current and future mining developments; 2) an exposure area located on the Steepbank River in the vicinity of the Steepbank Mine; and 3) a reference area located on the Steepbank River upstream of the Steepbank Mine and timber harvesting operations. Due to substantial differences in habitat, as well ongoing (and predicted) mining development, a suitable reference site was not available on the upper Muskeg River.

Sentinel species monitoring on the Muskeg and Steepbank rivers evaluated the whole-organism response of slimy sculpin (*Cottus cognatus*). Slimy sculpin was selected as a potential sentinel species because:

- It occurs in both the Muskeg and Steepbank Rivers (Bond and Machniak 1979; Machniak and Bond 1979; Golder 1998a, 1999a; Parrott and Sherry 1999).
- It exhibits territorial behaviour limiting the potential for large-scale movement among reference and exposure study sites.
- Spawning occurs in the spring rather than multiple times throughout the spring-summer period (i.e., easier to evaluate reproductive effort).
- Gonadal development is sufficiently advanced in the fall to measure reproductive parameters such as gonad size, fecundity, and *in vitro* sex hormone production.

Final confirmation of slimy sculpin as the sentinel species was dependent on capture success during the fall field study.

As with the Athabasca River monitoring program, sentinel monitoring on the tributaries was a collaborative initiative between RAMP and PERD, with additional in-kind support provided by Syncrude and Suncor.

Fish Collections

Field work on the Muskeg and Steepbank rivers was conducted during September 18-26, 1999. Slimy sculpin were collected from a total of five sites (Figure 3.3), three exposed sites and two reference sites. The general location and UTM coordinates of each sampling site are provided in Table 3.5. Overall, each site was dominated by shallow run/riffle habitat with cobble and/or boulder substrates (Appendix III). Some differences did exist among sites including reduced water depth at the Muskeg River, upstream of the mouth (site MR-MT) and smaller substrate and reduced habitat availability at the fish fence on the Muskeg River (site MR-FF). Habitat at the Steepbank River reference site (site SR-R) was the most homogenous in terms of substrate type and water depth/flow, probably reflecting a moderate increase in river gradient at this site. Habitat at the Steepbank River, near the mine (site SR-MN) was the most variable in terms of water depth, velocity and substrate size.

On the Muskeg River sampling was initially conducted at the site used previously for the fish fence study (MR-FF)(Golder 1999a). Although early capture success of slimy sculpin was good at this site, availability of suitable sampling habitat in this area was very limited due to beaver dams and reduced flow. Therefore, an alternative site located upstream from the confluence with the Athabasca River was also sampled (MR-MT).

Table 3.5General Location and UTM Co-ordinates of Sampling Sites for Slimy
Sculpin (Cottus cognatus), Muskeg River and Steepbank River, Fall
1999

Site	General Location	UTMs ^(a) of Sampling Reach					
Muskeg	Muskeg River						
MR-FF	exposure site in the vicinity of past fish fence site, sampling area also extended approx. 750 m downstream to next available riffles	U/S: 465521 E / 6338751 N D/S: 465556 E / 6337938 N					
MR-MT	exposure site approx. 350 m upstream from the mouth of the Muskeg River (entering the Athabasca River)	U/S: 463947 E / 6331932 N D/S: 463753 E / 6332261 N					
Steepbar	nk River						
SR-MN	exposure site in the vicinity of Steepbank Mine, approx. 650 m upstream of confluence with the Athabasca River	U/S: 472493 E / 6319674 N D/S: 471337 E / 6319947 N					
SR-R	reference site in the vicinity of Bitumin Heights approx. 16 km upstream of the confluence with the Athabasca River	U/S: 479668 E / 6316295 N D/S: 479397 E / 6316192 N					
SR-EC	reference site – approx. 21 km upstream of the confluence with the Athabasca River	^(b) 479457 E / 6316293 N					

^(a) Universal Transverse Mercator (UTM) taken at the upstream (U/S) and downstream (D/S) boundary of each sampling reach.

^(b) Point estimate within the general sampling reach.

On the Steepbank River, Environment Canada sampled an additional site (SR-EC) upstream of the RAMP reference site (SR-R). Preliminary research by Environment Canada indicated that this site is not strongly influenced by the oil sands formation and will help them identify potential effects related to natural sources of oil sands compounds at site SR-R1 (i.e., SR-R vs. SR-EC). This site is mentioned in this report for completeness; however, no statistical comparisons were made using site SR-EC. Environment Canada will be conducting these analyses as part of their PERD research.

Although unsuccessful, effort was made to collect sentinel fish from a separate reference river located on the west side of the Athabasca River. Based on discussion during the RAMP Technical Subcommittee meeting, two possible candidates were the Ells River and Dunkirk River. The Dunkirk River was accessible only by helicopter. Fish capture data reported by Alberta Pacific Ltd. (Mark Spafford, unpubl. data), as well as historical information (Machniak et al. 1980), indicated that capture success of slimy sculpin was low. In light of this information, effort was focussed on accessible sites on the Ells River located at the Fort McKay water intake facility and the terminus of old Highway 963 (location of the 1998 RAMP fish fence, Table 3.6). Two additional sites on the Ells River were also accessed by helicopter and sampled by Environment Canada (Table 3.6). These additional sites looked particularly promising due to the availability of moderately flowing run/riffle habitat and cobble/gravel substrate.

Unfortunately, no slimy sculpin (adults or immatures) were captured at any site on the Ells River.

Table 3.6	Location, General Description and UTM Co-ordinates of Fish
	Collection Sites, Ells River, Fall 1999

Site	General Description	UTM's ^(a) of Sampling Reach
ER-R1	approx. 0.5 km upstream from road access via old Highway 963 from Fort McKay	≈ 45920 E / 635135 N ^(b)
ER-R2	site accessed by helicopter approx. 12 km upstream of ER-R1	456590 E / 6346619 N
ER-R3	in the vicinity of Fort MacKay water intake facility approx. 12 km upstream of ER-R2	455139 E / 6343450 N
ER-R4	site accessed by helicopter approx. 26 km upstream of ER-R3	446314 E / 6343057 N

^(a) Universal Transverse Mercator co-ordinates (UTM).

^(b) Estimated from topographical map 74 E/5.

Sculpin were collected using a backpack electrofisher (Smith-Root Type 15-D). In faster water, a pole seine (2 m by 1.2 m by 0.5 cm mesh size) was held downstream of the electrofisher to collect fish swept by the current. Sampling was conducted following detailed methods outlined in Golder Technical Procedure 8.1-3 (Golder 1999b). All fish species captured were identified and enumerated.

Sentinel fish were transported live to the on-site laboratory in aerated buckets, where they were immediately transferred to a larger aerated tank (40 L). Fish were held overnight (approx. 12 h) prior to processing in an effort to standardize holding/travel time among sampling sites. Sculpin were held longer than troutperch (see Section 3.1.2.2) in response to the increased distance and/or remoteness of some of the collection sites, as well as increased sampling effort required per day to collect adequate numbers of fish. With a few minor exceptions, processing procedures were identical to methods described in Section 3.1.2.2 for the Athabasca River fish collection. Unlike trout-perch, only otoliths could be collected from slimy sculpin for ageing (sculpin have no scales), and total length, not fork length, was measured as a estimate of length (the tail is not forked). Liver samples for MFO analyses and gonadal tissues for *in vitro* sex steroid analyses were also collected from sculpin according to procedures outlined in Section 3.1.2.2. These analyses were done as part of the PERD research lead by J. Parrott and M. McMaster, Environment Canada, National Water Research Institute, Burlington, Ontario.

At the time of writing this report, both MFO and *in vitro* steroid assays were ongoing and data were not available for inclusion.

Data Analyses

Statistical analysis of sentinel fish species data was done using SYSTAT[®] statistical software (Wilkinson 1990). Statistical procedures used to evaluate potential differences in whole-organism performance of slimy sculpin were the same as described previously for trout-perch (see Section 3.1.2.2). Analyses were conducted to compare fish performance between:

- Steepbank River reference site vs. Muskeg River exposure site; and
- Steepbank River reference site vs. Steepbank River exposure site.

As for trout-perch, power analysis was used to evaluate the adequacy of sample sizes for detecting potential site-differences in the performance of slimy sculpin. For simple two site comparisons (i.e., SR-R vs. MR-MT, SR-R vs. SR-MN), the equation used to estimate the appropriate sample size for a given effect size (or difference in performance between sites) is (from Alldredge 1987; Environment Canada and Department of fisheries and Oceans 1995):

$$n \ge 2(Z_{\alpha(2)} + Z_{\beta})^2 (SD/\delta)^2 + 0.25Z_{\alpha(2)}^2$$

where *n* is the number of samples, SD is the standard deviation (or root MSE from ANOVA/ANCOVA model), δ is the specified effect size, and $Z_{\alpha(2)}$ (two-tailed test) and Z_{β} (one-tailed test) are the critical values of the standard normal deviates or Z-values. Parameter-specific sample sizes were estimated for an effect size of 20, 30 and 50% (i.e., differences between sites).

3.3 WETLANDS

3.3.1 Water Quality

Water samples were collected from the open water area in Shipyard Lake (Figure 3.4) on May 7, July 12 and October 18, 1999. During each sampling event, ten individual 1 L grab samples were collected and combined to form one composite sample. Sample bottles were placed approximately 30 cm below the water surface. The composite sample was divided into two parts, and one part was shipped to ETL and analyzed for conventional parameters, major ions, nutrients, total and dissolved metals, recoverable hydrocarbons and naphthenic acids. The other part of the composite sample was sent to HydroQual for chlorophyll a and Microtox[®] analysis. Field measurements (i.e., DO, pH, conductivity and temperature) were taken at every sampling location.

Wetlands water quality data were analyzed by the same methods as those described in Section 3.2.1.2.

3.3.2 Sediment Quality

Five individual sediment samples were collected from Kearl Lake on October 20, 1998. Sediments were taken from the top 3 cm of the lake bottom using a Ponar grab sampler in accordance with Golder Technical Procedure 8.2-2 (Golder 1999b). Individual samples were combined to form one composite sample that was sent to Marlene Evans at Environment Canada for PAH analysis. Since the results of this analysis became available in 1999, they are included in this report.

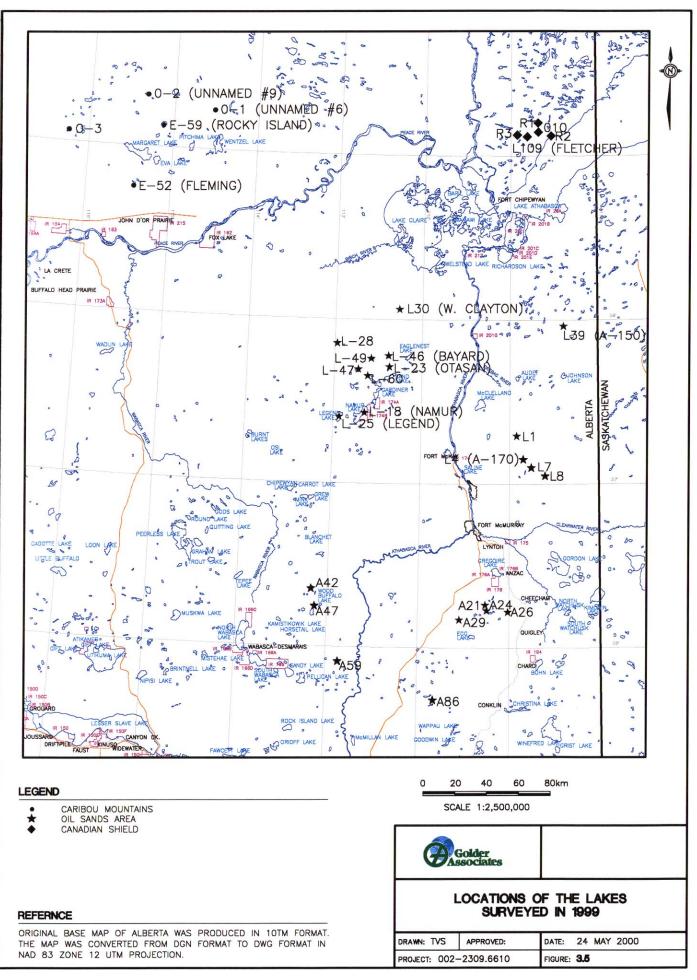
3.4 ACID SENSITIVE LAKES

3.4.1 Lake Selection

Available historical data were examined to select lakes that would be suitable for the RAMP acidification monitoring network. A number of recent surveys have provided water chemistry data for about 470 lakes in northern Alberta (Erickson 1987; Saffran and Trew 1996; Al-Pac 1998 [unpublished data]). Historical data have also been compiled for many more lakes in this region (Saffran and Trew 1996).

Primary criteria for selecting lakes in north-eastern Alberta for the monitoring network included:

- moderate to high sensitivity to acidification, defined as total alkalinity <20 mg/L as CaCO₃;
- range in organic content, from clear water to brown water lakes;
- location along a gradient of acidic deposition radiating from the oil sands region, predicted in recent EIAs as Potential Acid Input (PAI; see below); and
- accessible by float plane to ensure a cost-effective program.


Additional considerations regarding lake selection included the necessity for "spatial controls" in areas distant from the oil sands region; inclusion of lakes that already have long-term data, such as L4, L7 and L25 (Saffran and Trew 1996); and, replication within each geographic area (Birch Mountains, Caribou Mountains, Muskeg Mountain Uplands, Canadian Shield) and lake type (clear water/brown water).

Classification of the lakes as "clear water" or "brown water" was based on an arbitrary criterion for dissolved organic carbon (DOC) concentration: lakes with \leq 20 mg/L DOC were classified as clear water and those with >20 mg/L DOC were considered brown water. Selection of both lake types in the Caribou Mountains and on the Canadian Shield (i.e., the spatial controls) was hindered by the lack of historical DOC data. Therefore, for the purposes of selecting candidate lakes, it was assumed that Caribou Mountain lakes would likely be brown water and Shield lakes would likely be clear water. The validity of these assumptions was to be confirmed in 1999.

The predicted PAI levels (i.e., acidic deposition rates) used to select lakes were those generated for the Cumulative Effects Assessment (CEA) scenario in the Syncrude Mildred Lake Upgrader Project EIA – Supplemental Response (Syncrude 1999). This scenario corresponds to the combined future deposition rates from all oil sands and related developments planned at the time of completion of the EIA. The range of PAI for the selected lakes was from <0.15 k_{eq} H⁺/ha/a (spatial control lakes and lakes subject to a low rate of acidic deposition) to just above 0.5 k_{eq} H⁺/ha/a (lakes closest to oil sands developments) (Table 1). A critical load of 0.25 k_{eq} H⁺/ha/a was proposed recently by the Target Loading Subgroup (1996) to protect Alberta's most sensitive lakes and soils from acidification. Therefore, the RAMP monitoring network was intentionally designed to incorporate lakes in areas receiving acidic deposition above and below the critical load.

Locations of the final set of 32 lakes chosen for the RAMP long-term acidification monitoring network are shown in Figure 3.5. Water chemistry and PAI data relevant to lake selection are provided in Table 3.7. The selected lakes included 12 brown water and 10 clear water lakes in the oil sands region, five lakes on the Canadian Shield and five lakes in the Caribou Mountains. A few of these lakes could not be sampled during the field program, because of poor access by fixed-wing aircraft (L68), or because the lakes could not be located using the available coordinates (O6, O8, O9). Therefore, four new lakes were chosen, based on ease of access (L8) and the approximate locations of O6, O8 and O9 (R1, R2, R3). The available data are also shown for these lakes in Table 1 (identified as "new").

					Alkalinity		Max.	
Lake ^(a)	Lake Type	Latitudo	Longitude	PAI ^(b) (keq/ha/a)	(mg CaCO₃/L)	DOC (mg/L)	Depth (m)	Comment for 1999 Program
Oil Sands Region		Latitude	Longitude	(Regnara)		(iiig/L)	(11)	1999 Hogram
A21	brown water	56.2667	111.2583	0.15 – 0.25	2.0	19.8	-	
A42	brown water	56.3500	113.1833	<0.15	9.2	27.7	-	
A59	brown water	55.9083	112.8667	<0.15	2.5	40.3	-	
L1	brown water	57.2853	110.9239	0.5 - 0.1	4.3	_(C)	0.9	
L4 (A-170)	brown water	57.1519	110.8514	0.25 - 0.50	10.4	27.0	1.3	
L7	brown water	57.0903	110.7519	0.25 - 0.50	13.1	27.0	1.6	
L8	brown water	57.0458	110.5975	0.25 – 0.50	14.2	-	1.2	new
L28	brown water	57.8556	112.9717	0.15 – 0.25	0.0	28.1	1.8	
L46 (Bayard)	brown water	57.7725	112.3964	0.25 - 0.50	6.9	23.6	1.3	
L47	brown water	57.6894	112.7361	0.15 – 0.25	7.9	21.7	1.5	
L49	brown water	57.7600	112.5967	0.15 – 0.25	7.8	27.5	1.1	
L60	brown water	57.6622	112.6125	0.15 – 0.25	15.7	25.5	3.0	
L68	brown water	57.8367	112.4606	0.25 - 0.50	11.4	40.0	0.8	not sampled
A24	clear water	56.2167	111.2500	0.15 – 0.25	1.3	12.9	-	
A26	clear water	56.2167	111.1667	0.15 – 0.25	3.1	8.3	-	
A29	clear water	56.1667	111.5417	0.15 – 0.25	3.2	10.5	-	
A47	clear water	56.2417	113.1333	<0.15	8.4	16.4	-	
A86	clear water	55.6833	111.8250	<0.15	7.8	13.4	-	
L18 (Namur)	clear water	57.4444	112.6211	0.15 – 0.25	18.9	7.9	27.0	
L23 (Otasan)	clear water	57.7072	112.3875	0.25 - 0.50	6.4	13.8	7.0	
L25 (Legend)	clear water	57.4122	112.9336	0.15 – 0.25	10.2	9.3	9.4	
L30 (W Clayton)	clear water	58.0514	112.2669	0.25 – 0.50	0.0	7.9	0.9	
L39 (A-150)	clear water	57.9600	110.3969	<0.15	9.9	17.3	1.1	
Caribou Mountains	6							
E52 (Fleming)	brown water?	58.7708	115.4342	control	13.0	-	-	
E59 (Rocky Island)	brown water?	59.1350	115.1336	control	15.0	-	-	
O1 (Unnamed #6)	brown water?	59.2378	114.5200	control	4.0	-	-	
O2 (Unnamed #9)	brown water?	59.3108	115.3589	control	8.0	-	-	
O3	brown water?	59.0489	116.2556	control	10.0	-	-	
Canadian Shield		•						
L109 (Fletcher)	brown water?	59.1205	110.8165	control	20.7	-	-	
O6	clear water?	58.6417	110.2375	control	2.0	-	-	not sampled
O8	clear water?	58.3800	110.1792	control	4.0	-	-	not sampled
O9	clear water?	58.4964	110.3744	control	6.0	-	-	not sampled
O10	clear water?	59.1358	110.6667	control	8.0	-	-	
R1	clear water?	59.1985	110.6868	control	-	-	-	new
R2	clear water?	59.1225	110.5142	control	-	-	-	new
R3	clear water?	59.1268	110.9315	control	-	-	-	new

Table 3.7Characteristics of Lakes Selected for Long-term Acidification
Monitoring, Showing Data Available at the Time of Lake Selection.

^(a) E# = Erickson (1987); O# = Acid Lake Database, AENV.

^(b) PAI = Potential Acid Input.

 $^{(c)}$ - = no data at the time of lake selection.

It should be noted that the predicted levels of acidic deposition are subject to ongoing refinement, which may necessitate periodic re-examination of the suitability of the lakes selected for this program. For example, the most recent PAI predictions generated for the CEA scenario of the Suncor Firebag In-Situ Oil Sands Project EIA (Suncor 2000) differ from those of Syncrude (1999). The refined model results of Suncor (2000) suggest that even with the addition of a new oil sands development, the area of >0.25 k_{eq} H⁺/ha/a PAI would be about half of that predicted by Syncrude (1999). Based on the Suncor (2000) model predictions, only three (L1, L4, L7) of the 32 lakes selected for the acidification monitoring network are located within or close to the area where the critical load would be exceeded in the future.

3.4.2 Field Methods

The field program was implemented during the summer of 1999. Sampling was carried out by Ms. Dorothy Kelker and Mr. Mark Spafford of Al-Pac, as part of an ongoing lake survey program being conducted in ALPAC's Forestry Management Area. Alberta Environment field staff collaborated by supplying technical advice and equipment. Lakes were sampled once between July 12 and August 17, 1999. A fixed-wing aircraft was used to access the study lakes.

Vertically integrated euphotic zone samples were collected from a number of sites in each lake using weighted Tygon tubing. The euphotic zone was defined as the depth of 1% of surface penetrating light, using a Protomatic photometer. Individual samples were then combined to form a single composite sample for the entire lake. Samples for chemical analysis were kept on ice and in the dark, and shipped to the Limnology Laboratory, University of Alberta, Edmonton within 24 hours of collection. All data have been archived by AENV.

Bathymetric data were unavailable for most of the lakes surveyed. In order to determine the approximate location of maximum depth in each lake (the preferred location for physical measurements), cross-sectional depth surveys were conducted in each lake. A global positioning system (GPS) unit was used to establish a linear transect and depth measurements were made by sonar at 100 m intervals across the central portion of each lake. Subsequently, vertical profiles of dissolved oxygen, temperature, specific conductance and pH were measured at the deepest location with a Hydrolab H20. Secchi depth was also recorded.

Sub-samples of 150 mL volume were taken from the euphotic zone composite samples, for phytoplankton taxonomy and chlorophyll a analysis. The phytoplankton samples were preserved using Lugol's solution. Samples for chlorophyll a analysis were stored and shipped on ice. At each lake, one or two

replicate zooplankton samples were collected as vertical hauls through the euphotic zone with a #20 mesh, conical plankton net. Zooplankton samples were preserved in approximately 8% formalin after anaesthetizing in Bromoseltzer. Plankton samples are being stored at AENV. Chlorophyll *a* samples were shipped to the Limnology Laboratory, University of Alberta, Edmonton, for analysis.

4 QUALITY ASSURANCE / QUALITY CONTROL

4.1 WATER AND SEDIMENT QUALITY

4.1.1 Field Sampling

4.1.1.1 Methods

A field Quality Assurance/Quality Control (QA/QC) sampling program for water and sediment was developed in partnership with Alberta Environment (AENV). This field program focused on the Muskeg River and Shipyard Lake, because the majority of water and sediment sampling occurred in these areas. The QA/QC field sampling program included:

- using field blanks to detect potential sample contamination during sample collection, shipping and analysis;
- using trip blanks to determine if sample contamination occurred during transport;
- analyzing RAMP/AENV split water samples to check intra-laboratory precision (i.e., precision at one laboratory) and inter-laboratory analytical variation (i.e., precision between the laboratories: RAMP samples were analyzed by Enviro-Test Laboratories (ETL); AENV samples were analyzed by Alberta Research Council, Vegreville [ARCV]);
- analyzing RAMP/AENV split sediment samples to check interlaboratory analytical variation (i.e., RAMP samples were analyzed by AXYS; AENV samples were analyzed by ARCV); and
- analyzing total and dissolved metal field blanks to check intralaboratory precision, inter-laboratory analytical variation and to determine the accuracy of RAMP's dissolved metal filtering procedure.

A detailed QA/QC field sampling schedule is provided in Table 4.1.

All water and sediment samples were collected in accordance with Golder Associates Technical Procedures 8.3-1 and 8.2-2, respectively (Golder 1999b). These procedures outlined standard sample collection, preservation, storage and shipping protocols. They also provided specific guidelines for field record keeping and sample tracking.

Season	Sample Site	QA/QC Sample(s)	Description
Winter			analyzed to detect potential sample contamination during collection, shipping and analysis
	Not site specific	trip blank	analyzed to determine if sample contamination occurred during transport
Spring	Shipyard Lake	field blank	analyzed to detect potential sample contamination during collection, shipping and analysis
	Not site specific	trip blank	analyzed to determine if sample contamination occurred during transport
Summer	Muskeg River- Downstream of Stanley Creek	split sample ^(a)	ETL analyzed one portion of the split sample and ARCV analyzed the other portion of the split sample to check inter-laboratory analytical variation
		total and dissolved metal field blanks - 6 sets ^(b) of total and dissolved metal field blanks (3 sets contain deionized water from ETL, 3 sets contain deionized water from ARCV)	four sets of total and dissolved metal blanks were analyzed by ETL (two sets contained ETL water, two sets contained ARCV water), the other two blanks (one set contained ETL water, one set contained ARCV water) were analyzed by ARCV. Results used to assess potential contamination during sample preparation and analysis, as well as to check inter-laboratory analytical variation, intra-laboratory precision and the accuracy of RAMP's dissolved metal sampling procedure
	Shipyard Lake	field blank	analyzed to detect potential sample contamination during collection, shipping and analysis
	Not site specific	trip blank	analyzed to determine if sample contamination occurred during transport
Fall	Muskeg River- Downstream of Stanley Creek	total and dissolved metal field blanks - 4 sets of total and dissolved metal field blanks (2 sets contained deionized water from ETL, 2 from ARCV)	two sets of total and dissolved metal blanks were analyzed by ETL (one set contained ETL water, one set contained ARCV water), the other two blanks (one set contained ETL water, one set contained ARCV water) were analyzed by ARCV. Results used to assess potential contamination during sample preparation and analysis, as well as to check inter-laboratory analytical variation and the accuracy of RAMP's dissolved metal sampling procedure
		field blank	analyzed to detect potential sample contamination during collection, shipping and analysis
	Muskeg River Mouth	split water sample (split into 6 portions)	three portions of the split sample were analyzed by ETL and the remaining three portions were analyzed by ARCV to determine intra- laboratory precision and check inter-laboratory analytical variation
		split sediment sample	one portion of the split sample was analyzed for polycyclic aromatic hydrocarbons (PAHs) by AXYS, the other portion of the split sample was analyzed for PAHs by ARCV to check inter-laboratory analytical variation
	Not site specific	trip blank	analyzed to determine if sample contamination occurred during transport

Table 4.11999 RAMP QA/QC Water and Sediment Sampling Program Schedule
and Description

(a) Split sample = one single sample is collected and split into two or more sample containers. They are labelled, preserved individually and submitted separately to the analytical laboratory or to two different laboratories. Split samples are analyzed for the full water or sediment quality suite of parameters.

^(b) Sample set = two sample bottles: total and dissolved metals.

In addition, all instruments used to assess water quality in the field were calibrated before use. Water and sediment quality sites sampled by Golder were recorded using a Global Positioning System (GPS) unit. The water and sediment

quality sites sampled by AENV (i.e., sites in the Athabasca River Delta) were recorded on a topographical map.

4.1.1.2 Results

Field and Trip Blanks

Field and trip blanks were analyzed by ETL. Parameter concentrations in both field and trip blanks were considered significant if they were greater than five times the corresponding method detection limit (MDL). This threshold is based on the Practical Quantitation Limit defined by the U.S. EPA (1985). Water quality parameters that exceeded five times the MDL are listed in Tables 4.2 and 4.3. Raw data are presented in Appendix II, Table II-10.

Water quality results of the winter field and trip blanks indicate potential sample contamination. However, it is difficult to determine if the deionized water was contaminated before it was used to prepare the field blank (i.e., the water was not purified properly in the lab), during field sampling procedures or during the laboratory analysis processes.

Split Water Samples

In general, water quality data analyzed by ETL and ARCV are comparable. Analytical variation is low in the Muskeg River summer and fall split samples (Table 4.4). ARCV used lower detection limits for some water quality parameters. ETL reported higher levels of some total metals (i.e., aluminum, copper, lead, nickel, silver and zinc) and dissolved metals (i.e., aluminum, antimony, arsenic, iron, molybdenum and zinc) than ARCV in the water sample collected near Aurora Mine (Table 4.4). ETL also reported higher levels of total aluminum, total iron, total nickel and dissolved cobalt than ARCV in the water sample collected at the Muskeg River Mouth (Table 4.4).

Table 4.2	Summary of Water Quality Parameters in Field Blanks that Exceed
	Five Times the Method Detection Limit

	Detection Season ^(a)							
Parameter	Unit	Limit	Winter Spring		Summer	Comments ^(b)		
Chlorophyll a								
chlorophyll a	µg/L	< 1	-	67	-	А		
Total Metals								
barium	µg/L	< 0.2	4.3	-	-	В		
calcium	µg/L	< 100	3700	-	-	A		
chromium	µg/L	< 0.8	7.8	-	-	В		
copper	µg/L	< 1	8	-	-	В		
iron	µg/L	< 20	-	130	-	A		
lead	µg/L	< 0.1	3.5	0.6	-	B, B		
magnesium	µg/L	< 20	780	-	-	A		
manganese	µg/L	< 0.2	3.6	-	11.1	A, D		
molybdenum	µg/L	< 0.1	0.6	-	-	В		
nickel	µg/L	< 0.2	6.3	1.1	-	C, C		
potassium	µg/L	< 20	430	-	-	D		
sodium	µg/L	< 200	1000	-	-	A		
strontium	µg/L	< 0.2	24	-	-	A		
zinc	µg/L	< 4	-	-	21	С		
Dissolved Metals								
barium	µg/L	< 0.1	2.3	-	-	A		
chromium	µg/L	< 0.4	7.6	-	-	В		
copper	µg/L	< 0.6	5.0	-	-	B/C		
lead	µg/L	< 0.1	-	0.7	-	С		
manganese	µg/L	< 0.1	3.0	0.6	10.3	A, A, A		
molybdenum	µg/L	< 0.1	0.6	-	0.9	B, A		
nickel	µg/L	< 0.1	6.3	0.7	-	C, A		
strontium	µg/L	< 0.1	14	-	-	A		
zinc	µg/L	< 2	-	13	-	С		

^(a) - = parameter did not exceed five times the method detection limit; no parameters in the fall field blank was found at concentrations in excess of five times the method detection limit.

 $^{(b)}$ A = Sample concentrations from the relevant season were outside the historic range and greater than levels in the field blank; therefore, relevant sample concentrations were adjusted based on this result.

- B = Sample concentrations from the relevant season generally contained levels consistent with historic data; therefore, this findings was assumed to be an isolated error.
- C = Concentration in the field blank was higher than levels observed in the majority of the water samples collected in same season; therefore, this findings was assumed to be an isolated error.
- D = Same as "A", but trip blank concentration > field blank concentration; therefore, relevant sample concentrations were adjusted based on trip blank result.

Detection Season ^(a)										
		Detection								
Parameter	Unit	Limit	Winter	Spring	Summer	Fall	Comments ^(b)			
Nutrients and Chlorophyll a										
total phosphorus	µg/L	< 1	-	-	-	6	A			
chlorophyll a	µg/L	< 1	-	13	-	11	B, C			
Total Metals	Total Metals									
aluminum	µg/L	< 20	440	-	-	-	D			
barium	µg/L	< 0.2	14.4	-	-	-	A			
chromium	µg/L	< 0.8	8.1	-	-	-	А			
manganese	µg/L	< 0.2	2.4	-	127	-	B, C			
nickel	µg/L	< 0.2	5	-	-	-	E			
potassium	µg/L	< 20	610	-	-	-	С			
titanium	µg/L	< 0.6	3.6	-	-	-	D			
Dissolved Metals										
manganese	µg/L	< 0.1	1	-	-	-	В			

Table 4.3Summary of Water Quality Parameters in Trip Blanks that ExceedFive Times the Detection Limit

 $^{(a)}\,$ - = parameter did not exceed five times the method detection limit.

^(b) A = Concentration in trip blank was higher than concentrations observed in the field blank, and water samples contained levels consistent with historic data; therefore, this findings was assumed to be an isolated error.

- B = Concentration in trip blank was lower than concentrations observed in the corresponding field blank, and sample concentrations were adjusted based on field blank results.
- C = Concentration in trip blank was higher than concentrations observed in the field blank, and sample concentrations were adjusted based on this result.
- D = Concentration in trip blank was higher than concentrations observed in either the field or the water samples collected during that season; therefore, this findings was assumed to be an isolated error.
- E = Concentration in trip blank was lower than concentrations observed in the corresponding field blank, but higher than levels observed in water samples collected from that season; therefore, this findings was assumed to be an isolated error.

Program, 1999									
Parameter	Units	Downstream Stanley Creek (summer)		Mouth (fall)					
		ETL ARCV		ETL				ARCV	
potassium (K)	µg/L	470	-	1820	2030	1890	-	-	-
selenium (Se)	µg/L	< 0.8	< 0.5	< 0.8	< 0.8	< 0.8	< 0.5	< 0.5	< 0.5
silver (Ag)	µg/L	1.2	0.01	< 0.4	< 0.4	< 0.4	< 0.005	< 0.005	< 0.005
sodium (Na)	µg/L	4600	-	20800	12700	12000	-	-	-
strontium (Sr)	µg/L	126	133	225	215	224	222	222	224
titanium (Ti)	µg/L	< 0.6	1.1	1.5	1.9	2.3	2.5	2.4	4.0
uranium (U)	µg/L	< 0.1	0.03	0.30	0.30	0.30	0.25	0.23	0.25
vanadium (V)	µg/L	0.4	0.3	< 0.2	< 0.2	< 0.2	0.3	0.2	0.2
zinc (Zn)	µg/L	5	1	4	< 4	10	1	1	1
Metals (Dissolved)		-	-					-	
aluminum (Al)	µg/L	10	3.5	10	< 10	< 10	2.0	2.1	1.8
antimony (Sb)	µg/L	0.90	0.01	< 0.8	< 0.8	< 0.8	0.04	0.02	0.02
arsenic (As)	µg/L	2.3	0.3	< 0.4	< 0.4	< 0.4	0.2	0.2	0.3
barium (Ba)	µg/L	63	64	79	72	82	78	78	79
beryllium (Be)	µg/L	< 0.5	< 0.04	< 0.5	< 0.5	< 0.5	< 0.04	< 0.04	< 0.04
boron (B)	µg/L	37	34	57	38	52	47	46	47
cadmium (Cd)	µg/L	0.1	< 0.01	< 0.1	< 0.1	< 0.1	< 0.01	0.011	< 0.01
chromium (Cr)	µg/L	< 0.4	0.19	< 0.4	< 0.4	< 0.4	0.10	< 0.08	< 0.08
cobalt (Co)	µg/L	0.2	0.05	0.2	0.2	0.1	0.05	0.04	0.06
copper (Cu)	µg/L	1.5	< 0.08	1.6	1.0	1.0	0.55	0.68	0.80
iron (Fe)	µg/L	440	1066	340	370	340	115	106	97
lead (Pb)	µg/L	0.2	< 0.01	< 0.1	< 0.1	< 0.1	0.13	0.11	0.15
lithium (Li)	µg/L	8	7	10	10	11	11.5	11.2	12.1
manganese (Mn)	µg/L	64.8	50.6	13.0	13.4	12.9	11.6	11.7	11.5
mercury (Hg)	µg/L	< 0.2	-	< 0.01	< 0.01	< 0.01	-	-	-
molybdenum (Mo)	µg/L	6.1	0.05	0.1	0.1	0.1	0.1	0.1	0.1
nickel (Ni)	µg/L	1.1	< 0.06	2.8	2.0	1.9	0.14	0.36	0.21
selenium (Se)	µg/L	< 0.4	< 0.5	< 0.4	< 0.4	< 0.4	< 0.5	< 0.5	< 0.5
silver (Ag)	µg/L	1.3	< 0.005	< 0.2	< 0.2	< 0.2	< 0.005	< 0.005	< 0.005
strontium (Sr)	µg/L	139	130	234	220	227	221	222	222
titanium (Ti)	µg/L	1.3	0.9	1.0	1.1	1.1	2.2	2.0	2.6
uranium (U)	µg/L	< 0.1	0.04	0.2	0.3	0.2	0.24	0.25	0.20
vanadium (V)	µg/L	0.2	0.2	0.3	0.3	< 0.1	0.2	0.2	0.2
zinc (Zn)	µg/L	5	2	< 2	< 2	< 2	1	1	1

Table 4.4Water Quality of Muskeg River Split Samples – RAMP Field QA/QC
Program, 1999

- = No data.

ETL and ARCV have high analytical precision. There is little or no internal laboratory variation in the water quality results of the split water sample collected from the Muskeg River mouth (Table 4.4). However, slight differences are reported by ETL in levels of a few total metals (i.e., aluminum, sodium and zinc). ARCV reported slight differences in total chromium and dissolved nickel (Table 4.4).

Split Sediment Samples

In general, the analytical variation between AXYS and ARCV is low, although AXYS and ARCV used slightly different detection limits on a variety of sediment quality parameters (Table 4.5). Slight variability is noted between AXYS and ARCV in levels of parameters in the naphthalene, anthracene/chrysene and phenanthrene/anthracene groups. Slight differences are also noted in benzo(g,h,i)perylene, substituted dibenzothiophene and methyl fluoranthene/pyrene (Table 4.5). AXYS could not confirm the results for naphthalene, benzo(a) anthracene/chrysene and benzo(g,h,i)perylene (i.e., the GCMS spectra used to develop the results were ill-defined).

Total and Dissolved Metal Field Blanks

ETL and ARCV analyzed total and dissolved metal field blanks that were prepared downstream of Stanley Creek in summer and fall (Table 4.6). Deionized water from ETL and ARCV were used in these field blanks to determine inter-laboratory analytical variation and intra-laboratory precision.

In summer, ETL's analytical precision was high. There was little variation in water quality from the replicate ETL and ARCV field blanks, with the exception of total and dissolved iron in ETL water and total and dissolved barium in ARCV water (Table 4.6).

Slight differences in data occasionally occur because ARCV used lower detection limits for some water quality parameters (Table 4.6). However, ETL consistently reports significantly higher levels of total and dissolved aluminum, manganese and zinc in both types of deionized water. Levels of other elements (i.e., total and dissolved barium, copper, iron and lead) are occasionally above detection limits. ETL was notified of potential metal contamination in their analysis process, and they have since applied corrective action. ETL water quality results for these parameters are significantly lower in fall, and more comparable to ARCV's reported results (Table 4.6).

In fall, ETL reported elevated levels of calcium and magnesium in ARCV deionized water, possibly indicating that this laboratory water was not purified properly (Table 4.6).

Reported dissolved metal levels were occasionally greater than corresponding total metal concentrations (i.e., aluminum, antimony, barium, copper, iron and zinc) (Table 4.6). However, due to the sporadic occurrences of elevated dissolved metal levels, it is difficult to conclude whether this is a result of laboratory analysis or field filtering procedure error.

Table 4.5Sediment Quality of the Muskeg River Mouth Split Sample - RAMP
Field QA/QC Program, 1999

Parameter	Units	AXYS	ARCV
Target PAHs and Alkylated PAHs			
naphthalene	ng/g	18 ^(a)	13
methyl naphthalenes	ng/g	15	5
C2 substituted naphthalenes	ng/g	18	< 4
C3 substituted naphthalenes	ng/g	16	< 6
C4 substituted naphthalenes	ng/g	< 2	< 4
acenaphthene	ng/g	< 4	< 2
methyl acenaphthene	ng/g	< 1	3
acenaphthylene	ng/g	< 1	< 4
anthracene	ng/g	< 3	< 1
dibenzo(a,h)anthracene	ng/g	< 21	< 4
benzo(a)anthracene/chrysene	ng/g	16 ^(a)	8
methyl benzo(a)anthracene/chrysene	ng/g	< 3	6
C2 substituted benzo(a)anthracene/chrysene	ng/g	< 2	8
benzo(a)pyrene	ng/g	< 10	< 7
methyl b(b&k)f/methyl b(a)p	ng/g	< 9	< 9
C2 substituted b(b&k)f/b(a)p	ng/g	< 6	< 6
benzo(b&k)fluoranthene	ng/g	< 12	< 6
benzo(g,h,i)perylene	ng/g	14 ^(a)	7
biphenyl	ng/g	< 1	< 2
methyl biphenyl	ng/g	< 1	< 2
C2 substituted biphenyl	ng/g	< 1	< 2
dibenzothiophene	ng/g	< 1	< 1
methyl dibenzothiophene	ng/g	< 10	< 2
C2 substituted dibenzothiophene	ng/g	< 4	12
C3 substituted dibenzothiophene	ng/g	< 4	29
fluoranthene	ng/g	3	< 1
methyl fluoranthene/pyrene	ng/g	17	8
fluorene	ng/g	3	< 2
methyl fluorene	ng/g	< 2	< 3
C2 substituted fluorene	ng/g	< 3	< 3
indeno(c,d-123)pyrene	ng/g	< 13	4
phenanthrene	ng/g	10	16
methyl phenanthrene/anthracene	ng/g	24	33
C2 substituted phenanthrene/anthracene	ng/g	40	25
C3 substituted phenanthrene/anthracene	ng/g	51	31
C4 substituted phenanthrene/anthracene	ng/g	36	86
pyrene	ng/g	5	3

^(a) Note from AXYS labs indicating that results could not be confirmed (i.e., peak detected but did not meet quantification criteria).

Table 4.6Water Quality of Total and Dissolved Metal Field Blanks (Muskeg
River - Downstream Stanley Creek) - RAMP Field QA/QC Program,
1999

				Su	Immer				F	all	
			Results	from ETL		Results f	rom ARCV	Results from ETL Results from AR			
Parameter	Units	ETL	water	1	water	ETL	ARCV	ETL	ARCV	ETL	ARCV
		(Repli	cates)	(Repli	cates)	water	water	water	water	water	water
Metals (Total)											
aluminum (Al)	µg/L	320	270	250	280	24	< 1	30	< 20	< 1	1
antimony (Sb)	µg/L	< 0.8	< 0.8	< 0.8	< 0.8	0.016	< 0.004	< 0.8	< 0.8	0.02	< 0.004
arsenic (As)	µg/L	< 1	< 1	< 1	< 1	< 0.02	< 0.02	< 1	< 1	< 0.02	0.03
barium (Ba)	µg/L	0.9	0.3	6.4	0.4	0.5	< 0.1	0.8	1.4	< 0.1	< 0.1
beryllium (Be)	µg/L	< 1	< 1	< 1	< 1	< 0.04	< 0.04	< 1	< 1	0.05	< 0.04
boron (B)	µg/L	9	6	4	< 4	0.7	1.1	< 4	< 4	< 0.08	< 0.08
cadmium (Cd)	µg/L	< 0.2	< 0.2	< 0.2	< 0.2	< 0.02	< 0.02	< 0.2	< 0.2	< 0.02	< 0.02
calcium (Ca)	µg/L	< 100	< 100	< 100	< 100	53	< 10	< 100	500	13	< 0.01
chromium (Cr)	µg/L	< 0.8	< 0.8	< 0.8	< 0.8	0.1	< 0.1	< 0.8	< 0.8	< 0.08	< 0.08
cobalt (Co)	µg/L	< 0.2	< 0.2	< 0.2	< 0.2	< 0.02	< 0.02	< 0.2	< 0.2	< 0.02	< 0.02
copper (Cu)	µg/L	2	1	< 1	1	0.4	< 0.08	2	< 1	0.12	0.08
iron (Fe)	µg/L	90	< 20	< 20	< 20	32	< 3	< 20	< 20	< 3	< 3
lead (Pb)	µg/L	0.4	0.1	< 0.1	0.2	0.4	0.1	< 0.1	< 0.1	< 0.01	< 0.01
lithium (Li)	µg/L	< 6	< 6	< 6	< 6	< 0.1	< 0.1	77	86	< 0.1	< 0.1
magnesium (Mg)	µg/L	30	< 20	< 20	< 20	-	-	< 20	70	-	-
manganese (Mn)	µg/L	14.4	12.9	10.2	11.0	0.6	< 0.01	0.8	1.1	< 0.01	0.07
mercury (Hg)	µg/L	< 0.2	< 0.2	< 0.2	< 0.2	-	-	< 0.2	< 0.2	-	-
molybdenum (Mo)	µg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.02	< 0.02	< 0.1	< 0.1	< 0.02	< 0.02
nickel (Ni)	µg/L	< 0.2	< 0.2	< 0.2	< 0.2	< 0.06	< 0.06	0.2	< 0.2	< 0.06	< 0.06
potassium (K)	µg/L	< 20	< 20	< 20	< 20	-	-	20	< 20	-	-
selenium (Se)	µg/L	< 0.8	< 0.8	< 0.8	< 0.8	< 0.5	< 0.5	< 0.8	< 0.8	< 0.5	< 0.5
silver (Ag)	µg/L	< 0.4	< 0.4	< 0.4	< 0.4	< 0.005	< 0.005	< 0.4	< 0.4	< 0.005	< 0.005
sodium (Na)	µg/L	< 200	< 200	< 200	< 200	-	-	200	300	-	-
strontium (Sr)	µg/L	< 0.2	< 0.2	< 0.2	< 0.2	< 0.5	< 0.5	< 0.2	1.0	0.01	0.03
titanium (Ti)	µg/L	< 0.6	< 0.6	< 0.6	< 0.6	< 0.2	< 0.2	< 0.6	0.9	< 0.2	< 0.2
uranium (U)	µg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.003	< 0.003	< 0.1	< 0.1	0.005	0.005
vanadium (V)	µg/L	< 0.2	< 0.2	< 0.2	< 0.2	0.027	< 0.008	< 0.2	0.6	0.09	0.09
zinc (Zn)	µg/L	7	9	4	4	4	0.2	9	< 4	0.5	< 0.2
Metals (Dissolved)						•				•	
aluminum (Al)	µg/L	260	260	260	240	0.3	< 0.1	< 10	< 10	0.2	14.2
antimony (Sb)	µg/L	< 0.8	< 0.8	< 0.8	0.9	2.8	5.9	< 0.8	< 0.8	0.6	2.4
arsenic (As)	µg/L	< 0.4	< 0.4	< 0.4	< 0.4	< 0.02	< 0.02	< 0.4	< 0.4	< 0.02	< 0.02
barium (Ba)	µg/L	0.4	< 0.1	6.8	< 0.1	0.15	< 0.02	0.2	1.8	1.0	< 0.02
beryllium (Be)	µg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.04	< 0.04	< 0.5	< 0.5	< 0.04	< 0.04
boron (B)	µg/L	< 2	< 2	< 2	< 2	< 0.08	< 0.08	< 2	< 2	0.16	< 0.08
cadmium (Cd)	µg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.01	< 0.01	< 0.1	< 0.1	0.01	0.01
chromium (Cr)	µg/L	< 0.4	< 0.4	< 0.4	< 0.4	< 0.1	< 0.1	< 0.4	< 0.4	< 0.08	< 0.08
cobalt (Co)	µg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.02	< 0.02	< 0.1	< 0.1	< 0.02	< 0.02
copper (Cu)	µg/L	1.8	1.1	0.9	1.1	< 0.08	0.1	< 0.6	1.4	< 0.02	< 0.08
iron (Fe)	µg/L	60	< 10	30	20	< 3	< 3	< 10	20	58	< 3
lead (Pb)	µg/L	0.3	0.1	< 0.1	0.2	0.1	0.1	< 0.1	< 0.1	< 0.01	< 0.01
lithium (Li)	µg/L	< 3	< 3	< 3	< 3	< 0.1	< 0.1	9	12	0.3	< 0.1
manganese (Mn)	µg/L	12.8	11.8	9.5	10.4	0.5	0.5	0.1	1.0	8.2	0.4
mercury (Hg)	µg/L	0.2	0.2	0.1	0.1	-	-	< 0.1	< 0.1	-	
molybdenum (Mo)	µg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.02	< 0.02	< 0.1	< 0.1	< 0.02	< 0.02
nickel (Ni)	μg/L	< 0.1	< 0.1	< 0.1	< 0.1	0.11	< 0.02	< 0.1	< 0.1	< 0.02	< 0.02
selenium (Se)	μg/L	< 0.4	< 0.4	< 0.4	< 0.4	< 0.5	< 0.5	< 0.4	< 0.4	< 0.5	< 0.5
silver (Ag)	μg/L	< 0.4	< 0.4	< 0.2	0.4	< 0.005	< 0.005	< 0.4	< 0.4	< 0.005	< 0.005
strontium (Sr)	µg/∟ µg/L	0.1	< 0.2	< 0.2	< 0.1	0.1	< 0.003	< 0.2	0.9		
titanium (Ti)	µg/∟ µg/L	0.1	< 0.1	< 0.3	< 0.3	< 0.2	< 0.004	< 0.3	0.5	< 0.2	< 0.2
uranium (U)	μg/L μg/L	< 0.1	< 0.3	< 0.3	< 0.3	< 0.20	< 0.003	< 0.3	< 0.1	0.005	0.004
vanadium (V)	μg/L μg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.003	< 0.003	0.2	0.3	0.005	0.004
zinc (Zn)	μg/L μg/L	3	< 2	< 2	< 2	3.9	< 0.008 0.4	4	<u>0.3</u> 5	0.09	0.033

Bolded values = less than method detection limit.

- = No data.

4.1.2 Laboratory Analysis

4.1.2.1 Methods

As part of the laboratory QA/QC program, RAMP requested ETL to provide the results of the internal quality control checks on their analytical equipment and sampling procedures. The laboratory QA/QC program included:

- Using lab equipment blanks to detect contamination from analytical equipment. Equipment blanks were prepared in spring and summer by rinsing precleaned equipment with laboratory deionized water, and collecting and analyzing the rinsate.
- Using spiked samples to check for interference from the laboratory sample matrix. Spiked samples were prepared by adding a specified amount of a chemical to the sample and measuring the percent recoveries.
- Splitting a water sample collected in the field to check analytical precision.

4.1.2.2 Results

Lab Equipment Blanks

Levels of water quality parameters that were five times above the method detection limit in the spring and summer lab equipment blanks are provided in Table 4.7. Raw data are provided in Appendix II, Table II-10.

Table 4.7Summary of Water Quality Parameters in Lab Equipment Blanks That
Exceed Five Times the Detection Limit

		Detection	Season ^(a)					
Parameter	Unit	Limit	Spring	Summer	Comment ^(b)			
Total Recoverable Hydrocarbons								
total recoverable hydrocarbons	mg/L	< 0.5	-	12.1	A			
Total Metals								
manganese	µg/L	< 0.2	-	8.1	В			
nickel	µg/L	< 0.2	-	2.5	A			
silver	μg/L	< 0.4	5.9	-	А			
zinc	μg/L	< 4	-	24	А			
Dissolved Metals								
boron	µg/L	< 2	12	-	А			
zinc	µg/L	< 2	23	-	А			

^(a) Lab blanks were not included in the winter or fall sampling programs; - = parameter did not exceed five times the method detection limit.

(b) A = Concentration in lab blank was higher than concentrations observed in either the field blank, trip blank or the water samples collected during that season; therefore, this findings was assumed to be an isolated error.

B = Concentration in lab blank was lower than concentrations observed in the corresponding field blank, and sample concentrations were adjusted based on field blank results.

Spiked Samples

ETL spiked samples to check for interference from the laboratory sample matrix. Percentage recovery of spring and summer spiked samples are shown in Table 4.8. Water quality parameters that had less than 80% recovery were total silver, total uranium, dissolved antimony and dissolved silver.

Table 4.8Percent Recovery of Water Quality Parameters in Spiked Samples,
RAMP Laboratory QA/QC Program, 1999

Denemeter	Percent Recovery				
Parameter	spring	summer			
Conventional Parameters					
calcium	100	95			
chloride	105	99			
dissolved organic carbon	97	95			
magnesium	101	103			
potassium	93	97			
sodium	97	99			
sulphate	95	100			
sulphide	109	111			
total organic carbon	99	101			
Nutrients					
nitrate + nitrite	95	93			
nitrogen - ammonia	109	94			
nitrogen - kjeldahl	101	93			
phosphorus, total	94	111			
phosphorus,total dissolved	92	104			
Organics					
naphthenic acids	95	107			
total phenolics	96	109			
Metals (Total)					
aluminum (Al)	94	97			
antimony (Sb)	105	101			
arsenic (As)	91	97			
barium (Ba)	91	107			
beryllium (Be)	93	94			
boron (B)	121	105			
cadmium (Cd)	95	97			
calcium (Ca)	114	110			
chromium (Cr)	102	104			
cobalt (Co)	91	96			
copper (Cu)	100	96			
iron (Fe)	95	98			
lead (Pb)	89	104			
lithium (Li)	108	104			
magnesium (Mg)	113	102			
manganese (Mn)	90	96			
mercury (Hg)	94	92			
molybdenum (Mo)	117	102			
nickel (Ni)	84	96			
potassium (K)	95	97			

Deveryoter	Percent Recovery				
Parameter	spring	summer			
selenium (Se)	88	92			
silver (Ag)	108	58			
sodium (Na)	136	112			
strontium (Sr)	99	113			
titanium (Ti)	101	98			
uranium (U)	79	102			
vanadium (V)	101	98			
zinc (Zn)	94	89			
Metals (Dissolved)	-				
aluminum (Al)	137	91			
antimony (Sb)	98	41			
arsenic (As)	101	95			
barium (Ba)	100	108			
beryllium (Be)	102	97			
boron (B)	118	106			
cadmium (Cd)	103	100			
chromium (Cr)	93	104			
cobalt (Co)	91	95			
copper (Cu)	91	99			
iron (Fe)	95	94			
lead (Pb)	104	104			
lithium (Li)	86	103			
manganese (Mn)	98	92			
mercury (Hg)	93	93			
molybdenum (Mo)	121	100			
nickel (Ni)	86	96			
selenium (Se)	93	100			
silver (Ag)	101	66			
strontium (Sr)	86	105			
titanium (Ti)	84	98			
uranium (U)	104	101			
vanadium (V)	93	97			
zinc (Zn)	98	99			

Split Samples

ETL split spring and summer water samples collected from Shipyard Lake. The absolute and percent difference of each water quality parameter analyzed in the split samples are shown in Table 4.9. Water quality parameters that had a difference equal to or greater than 25% were a few total metals (i.e., aluminum, copper, molybdenum, zinc) and dissolved metals (i.e., aluminum, iron, mercury, nickel, titanium, vanadium, zinc). However, the numerical difference of these parameters in the split samples were insignificant. Absolute differences of total copper and dissolved nickel in summer were the only exception (Table 4.9).

			0			Summer			
Parameter	Units	Split Sa	Spriı mple	ng Difference between Split Samples (% Difference)	Split S		Difference		
Conventional Parameters	_								
bicarbonate	mg/L	186	189	3(2)	131	132	1(1)		
calcium	mg/L	41.2	41.2	0(0)	31.8	32.0	0.2(1)		
carbonate	mg/L	< 5	< 5	0(0)	16	16	0(0)		
chloride	mg/L	9	9	0(0)	8	8	0(0)		
colour	T.C.U.	30	30	0(0)	40	40	0(0)		
conductance	µS/cm	334	311	23(7)	275	274	1(0)		
dissolved organic carbon	mg/L	16	16	0(0)	16	16	0(0)		
hardness	mg/L	142	143	1(1)	120	122	2(2)		
magnesium	mg/L	9.5	9.7	0.2(2)	9.9	10.1	0.2(2)		
рН	-	8.0	7.8	0.2(3)	8.9	8.9	0(0)		
potassium	mg/L	1.5	1.5	0(0)	0.5	0.5	0(0)		
sodium	mg/L	12	13	1(8)	13	13	0(0)		
sulphate	mg/L	5.2	5.4	0.2(4)	3.5	3.7	0.2(5)		
sulphide	mg/L	0.003	0.003	0(0)	< 0.003	< 0.003	0(0)		
total alkalinity	mg/L	152	155	3(2)	134	135	1(1)		
total dissolved solids	mg/L	220	210	10(5)	220	210	10(5)		
total organic carbon	mg/L	18	19	1(5)	18	19	1(5)		
total suspended solids	mg/L	< 3	< 3	0(0)	4	4	0(0)		
Nutrients									
nitrate + nitrite	mg/L	< 0.1	< 0.1	0(0)	0.1	0.1	0(0)		
nitrogen - ammonia	mg/L	< 0.05	< 0.05	0(0)	< 0.05	< 0.05	0(0)		
nitrogen - kjeldahl	mg/L	0.9	0.9	0(0)	0.8	0.8	0(0)		
phosphorus, total	µg/L	19	19	0(0)	12	13	1(8)		
phosphorus,total dissolved	µg/L	14	14	0(0)	4	4	0(0)		
Organics						-			
naphthenic acids	mg/L	< 1	< 1	0(0)	< 1	< 1	0(0)		
total phenolics	μg/L	7	6	1(14)	2	1	1(50)		
Metals (Total)	1.1.3								
aluminum (Al)	µg/L	30	40	10(25)	70	70	0(0)		
antimony (Sb)	µg/L	< 0.8	< 0.8	0(0)	< 0.8	< 0.8	0(0)		
arsenic (As)	µg/L	< 1	< 1	0(0)	< 1	< 1	0(0)		
barium (Ba)	µg/L	33.9	32.6	1.3(4)	21.6	21.8	0.2(1)		
beryllium (Be)	µg/L	< 1	< 1	0(0)	< 1	< 1	0(0)		
boron (B)	µg/L	< 4	< 4	0(0)	34	36	2(6)		
cadmium (Cd)	µg/L	< 0.2	< 0.2	0(0)	< 0.2	< 0.2	0(0)		
calcium (Ca)	µg/L	36600	37500	900(2)	32200	30500	1700(5)		
chromium (Cr)	µg/L	< 0.8	< 0.8	0(0)	< 0.8	< 0.8	0(0)		
cobalt (Co)	µg/L	< 0.2	< 0.2	0(0)	< 0.2	< 0.2	0(0)		

Table 4.9Water Quality of Shipyard Lake Split Samples, RAMP Laboratory
QA/QC Program, 1999

		Spring Difference between Split Samples (% Difference)		Summer			
Parameter	Units			Difference between Split	Split Sample		Difference between Split Samples (% Difference)
copper (Cu)	µg/L	< 1	< 1	0(0)	1	4	3(75)
iron (Fe)	µg/L	380	430	50(12)	220	200	20(9)
lead (Pb)	µg/L	0.4	0.4	0(0)	0.1	0.2	0.1(50)
lithium (Li)	µg/L	9	9	0(0)	10	10	0(0)
magnesium (Mg)	µg/L	8040	7840	200(2)	9830	8720	1110(11)
manganese (Mn)	µg/L	24.3	26.6	2.3(9)	18.6	17.4	1.2(6)
mercury (Hg)	µg/L	< 0.2	< 0.2	0(0)	< 0.2	< 0.2	0(0)
molybdenum (Mo)	µg/L	0.4	0.3	0.1(25)	0.1	0.2	0.1(50)
nickel (Ni)	µg/L	1.3	1.9	0.6(32)	0.6	0.5	0.1(17)
potassium (K)	µg/L	1200	1220	20(2)	530	450	80(15)
selenium (Se)	µg/L	< 0.8	< 0.8	0(0)	< 0.8	< 0.8	0(0)
silver (Ag)	µg/L	< 0.4	< 0.4	0(0)	< 0.4	< 0.4	0(0)
sodium (Na)	µg/L	11600	11100	500(4)	11500	12900	1400(11)
strontium (Sr)	µg/L	128	130	2(2)	113	111	3(2)
titanium (Ti)	µg/L	1.0	1.0	0(0)	< 0.6	< 0.6	0(0)
uranium (U)	µg/L	< 0.1	< 0.1	0(0)	< 0.1	< 0.1	0(0)
vanadium (V)	µg/L	< 0.2	< 0.2	0(0)	0.2	0.2	0(0)
zinc (Zn)	µg/L	7	9	2(22)	12	9	3(25)
Metals (Dissolved)							
aluminum (Al)	µg/L	10	10	0(0)	10	20	20(50)
antimony (Sb)	µg/L	< 0.8	< 0.8	0(0)	< 0.8	1.8	1(56)
arsenic (As)	µg/L	< 0.4	0.5	0.1(20)	1.3	1.0	0.3(23)
barium (Ba)	µg/L	30.8	25.8	5(16)	17.1	17.0	0.1(1)
beryllium (Be)	µg/L	< 0.5	< 0.5	0(0)	< 0.5	< 0.5	0(0)
boron (B)	µg/L	3	< 2	1(34)	35	35	0(0)
cadmium (Cd)	µg/L	< 0.1	< 0.1	0(0)	< 0.1	< 0.1	0(0)
chromium (Cr)	µg/L	0.4	0.4	0(0)	< 0.4	< 0.4	0(0)
cobalt (Co)	µg/L	0.1	0.1	0(0)	0.1	0.1	0(0)
copper (Cu)	µg/L	0.9	1.0	0.1(10)	1.6	1.6	0(0)
iron (Fe)	µg/L	140	210	70(33)	130	120	10(8)
lead (Pb)	µg/L	0.2	0.2	0(0)	0.2	0.2	0(0)
lithium (Li)	µg/L	8	8	0(0)	10	11	1(9)
manganese (Mn)	µg/L	15.4	18.8	3.4(18)	11.1	11.4	0.3(3)
mercury (Hg)	µg/L	0.1	0.1	0(0)	0.2	0.1	0.1(0)
molybdenum (Mo)	µg/L	0.4	0.4	0(0)	0.6	0.5	0.1(0)
nickel (Ni)	µg/L	1.4	1.9	0.5(26)	0.5	1.5	0.5(67)
selenium (Se)	µg/L	< 0.4	< 0.4	0(0)	< 0.4	< 0.4	0(0)
silver (Ag)	µg/L	< 0.2	< 0.2	0(0)	< 0.2	< 0.2	0(0)
strontium (Sr)	µg/L	124	120	4(3)	112	119	7(6)
titanium (Ti)	µg/L	0.9	0.9	0(0)	< 0.3	0.4	0.1(25)
uranium (U)	µg/L	< 0.1	< 0.1	0(0)	< 0.1	< 0.1	0(0)
vanadium (V)	µg/L	0.2	0.3	0.1(33)	0.2	0.1	0.1(50)
zinc (Zn)	µg/L	8	10	2(20)	< 2	4	2(50)

4.1.3 Data Analysis

Water quality and sediment data were entered into the project database from the electronic files and paper reports received from the analytical laboratories. All of the new data was verified against each laboratory's final reports to ensure data accuracy. Less than 5% of the values were found to be entered incorrectly. These mistakes were corrected.

4.2 **FISHERIES**

4.2.1 Field Sampling

Fish collections for sentinel monitoring and inventory work were conducted in accordance to Golder Technical Procedure 8.1.3 (Golder 1999b). Sentinel species were processed according to procedures outlined in the Technical Procedure 8.15-0 (Golder 1999b). Detailed field notes were maintained in a bound notebook and fisheries data were recording using appropriate capture and biomarking data sheets.

Routine water quality data (pH, conductivity, temperature, dissolved oxygen) were collected at each site. Water quality instruments were calibrated at the start of each sampling day. The start and finish of each fisheries sampling reach was recorded using a GPS unit. A photograph of each fish collection site was also taken.

Eggs for fecundity analyses were stored in labelled plastic vials filled with Gillson's solution (i.e., preservative) pending future laboratory analyses. Fish ageing structures (otoliths, scales) were stored in labelled plastic vials. Chain-of-custody forms were used when shipping these structures for ageing analyses.

4.2.2 Laboratory Analysis

Fish ageing was conducted by Northshore Environmental Services, Thunder Bay, Ontario. Jon Tost (proprietor) is recognized as an expert in ageing fish. Otoliths were the primary ageing structure, although scales were also used when necessary. Ageing structures were read independently at least three times and a numerical confidence level was assigned to each age estimate.

A single person (Golder Associates) conducted all fecundity analyses. At least 10% of all fecundity samples were re-counted by a second independent reader. However, precision of estimates was difficult to evaluate because re-counts were

strongly influenced by eggs breaking due to additional handling. In general, the variability in fecundity estimates was less than 10%.

4.2.3 Data Analysis

Fisheries data were entered into the project database from field and laboratory data sheets. All entries were independently checked for errors by a second person. All data were again screened graphically and using summary statistics for possible data entry errors and/or "suspicious" data points prior to data analyses. All entry errors were corrected. All raw sentinel species data have been provided in Appendix IV.

5 ATHABASCA RIVER – RESULTS AND DISCUSSION

5.1 WATER AND SEDIMENT QUALITY

5.1.1 Water Quality

Near the Embarras River

Water collected from the Athabasca River near the Embarras River during the winter of 1999 was non-toxic (as defined by Microtox[®] testing) and contained non-detectable levels of naphthenic acids (Table 5.1). Concentrations of nutrients, major ions, metals and organics were consistent with historical data (Tables 5.1 and 5.2). However, in 1999, the Athabasca River was more basic (Appendix II, Table II-1) and contained more total zinc and aluminum than recently observed at this sampling location (Figures 5.1 and 5.2).

The pH and total zinc levels observed in 1999 did not exceed Alberta surface water guidelines for the protection of aquatic life and human health (Table 5.3). Total aluminum and iron concentrations exceeded water quality guidelines in 1999 (Table 5.3). Iron and aluminum levels have previously been observed to exceed guideline levels at this location in the Athabasca River (Figures 5.1 and 5.3).

Mercury concentrations in the Athabasca River have previously been observed to exceed the mercury guidelines upstream and downstream of Fort McMurray (Golder 1998b). However, the standard analytical detection limits for mercury exceed guideline levels, so it is unclear if mercury concentrations exceeded regulatory guidelines in 1999 at any of the Athabasca River sampling stations discussed herein (Table 5.3). The analytical detection limits reported in 1999 for total silver also exceed guidelines.

Athabasca River Delta

In the summer of 1999, water in the Athabasca River Delta was more basic and contained higher total dissolved solids (TDS), total aluminum, barium and zinc concentrations than typically observed in this area (Tables 5.1 and 5.2). Increased total metal levels may be the result of increased levels of total suspended solids (TSS), since dissolved metal concentrations were much smaller than the total metal concentrations. Sample waters collected in 1999 were non-toxic to bacteria and contained non-detectable levels of naphthenic acids.

5-1

			oarras River inter)	Athabasca Del (summer)	
Parameter	Units	1999	Historical Median ^(a)	1999 ^(b)	Historica Median ^(c)
Field Measured					
pН		8.2	7.4	8.2	7.7
specific conductance	µS/cm	473	459	255	240
temperature	°C	0.1	0.0	-	17.8
dissolved oxygen	mg/L	13.5	10.7	-	8.6
Conventional Parameters and	Major Ion	s			
chloride	mg/L	38	32	6	6
dissolved organic carbon	mg/L	5	7	5	8
sulphate	mg/L	46	33	23	17
total alkalinity	mg/L	149	144	105	93
total dissolved solids	mg/L	300	265	190	141
total organic carbon	mg/L	6	8	6	10
total suspended solids	mg/L	5	4	157	92
Nutrients and Chlorophyll a					
nitrate + nitrite	mg/L	0.3	0.2	< 0.1	-
nitrogen – ammonia	mg/L	0.08	0.05	< 0.05	-
nitrogen – total	mg/L	0.8	0.8	0.7	0.6
phosphorus, total	µg/L	34	32	103	89
chlorophyll <i>a</i>	µg/L	0	0.3	7	1
Biochemical oxygen demand					
biochemical oxygen demand	mg/L	< 2	0.6	< 2	-
Toxicity ^(d)					
Microtox IC50 @ 15 min	%	> 91	-	> 91	-
Microtox IC25 @ 15 min	%	> 91	-	> 91	-
Organics					
naphthenic acids	mg/L	< 1	-	< 1	-
total phenolics	µg/L	2	4	< 1	3

Table 5.1 Water Quality in the Athabasca River and the Athabasca River Delta

^(a) Based on information from NAQUADAT stations AB07DD0004/006/007/008.

^(b) pH and specific conductance measurements were measured in the lab, not in the field.

^(c) Based on information from NAQUADAT stations AB07DD0160/170/220/230/240.

^(d) Microtox[®] results are interpreted as the percentage strength of sample water that had a non-toxic response. The higher the percentage, the less dilution required to make the sample non-toxic (i.e., higher percentages indicate lower toxicity). Since the test organisms live in water, there is always a slight dilution (<9%) of sample waters with the introduction of the test organisms; hence, a result of >91% (instead of a reading of 100%) indicates that test waters are non-toxic.

			barras River inter)		sca Delta nmer)
Parameter	Units	1999	Historical Median ^(a)	1999	Historical Median ^(b)
Total Metals					
aluminum (Al)	µg/L	300	70	6890	600
antimony (Sb)	µg/L	< 0.8	-	< 0.8	-
arsenic (As)	µg/L	< 1	0.4	2	1.4
barium (Ba)	µg/L	65	66	122	61
cadmium (Cd)	µg/L	< 0.2	0	< 0.2	< 1
chromium (Cr)	µg/L	4	2	8	3
copper (Cu)	µg/L	2	1	5	3
iron (Fe)	µg/L	600	556	4560	-
lead (Pb)	µg/L	0.4	-	2.2	-
manganese (Mn)	µg/L	39	-	< 127	-
mercury (Hg)	µg/L	< 0.2	< 0.1	< 0.2	< 0.1
molybdenum (Mo)	µg/L	1.8	-	1.1	-
nickel (Ni)	µg/L	4.2	-	6.3	-
selenium (Se)	µg/L	< 0.8	< 0.1	< 0.8	< 0.2
silver (Ag)	μg /L	< 0.4	-	< 0.4	-
zinc (Zn)	µg/L	18	4	17	9
Dissolved Metals			•		
aluminum (Al)	µg/L	100	-	< 10	-
antimony (Sb)	µg/L	0.8	-	< 0.8	-
arsenic (As)	µg/L	< 0.4	0.5	0.6	0.9
barium (Ba)	µg/L	63	-	52	-
cadmium (Cd)	μg/L	0.3	-	< 0.1	-
chromium (Cr)	µg/L	< 0.4	< 3	< 0.4	< 3
copper (Cu)	µg/L	1.6	-	1.5	-
iron (Fe)	µg/L	130	-	150	-
lead (Pb)	µg/L	0.6	-	< 0.1	-
manganese (Mn)	µg/L	32.6	-	< 10.3	-
mercury (Hg)	µg/L	< 0.1	-	< 0.1	-
molybdenum (Mo)	µg/L	1.9	-	0.1	-
nickel (Ni)	µg/L	2.4	-	1.1	-
selenium (Se)	µg/L	< 0.4	< 0.2	< 0.4	< 0.2
silver (Ag)	µg/L	< 0.2	-	< 0.2	-
zinc (Zn)	µg/L	12	-	3	-

Table 5.2Metal Levels in the Athabasca River and the Athabasca River Delta

^(a) Based on information from NAQUADAT stations AB07DD0004/006/007/008.

^(b) Based on information from NAQUADAT stations AB07DD0160/170/220/230/240.

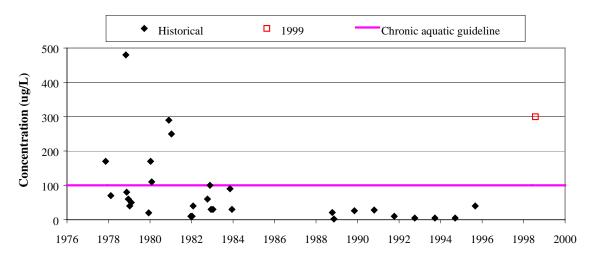
Table 5.3Summary of Parameters Found to Exceed Surface Water QualityGuidelines in the Athabasca River and the Athabasca River Delta

		Guideline	Guidelines for the Protection of			mbarras (winter)		sca Delta nmer)
		Aquati	c Life ^(a)	Human		Historical		Historical
Parameter	Units	Acute	Chronic	Health ^(b)	1999	Median	1999	Median
Nutrients								
phosphorus, total	μg /L	-	50	-			С	С
Total Metals								
aluminum (Al)	μg /L	750	100	-	С		AC	С
iron (Fe)	μg /L	-	300	300	СН	СН	СН	-
manganese (Mn)	μg /L	-	-	50		-	H`	-
mercury (Hg) ^(c)	μg /L	1.4	0.1	0.05	C H`	H`	C H)	H`
silver (Ag)	µg /L	3.4 - 9.0*	0.1	-	C`	-	C`	-

^(a) Guidelines taken from AENV (1999).

^(b) Guidelines taken from U.S. EPA (1999).

^(c) Using U.S. EPA and CCME guidelines, respectively, because Alberta mercury guidelines have not been finalized.


* Guidelines are hardness dependant; calculated at each sample site using the U.S. EPA method described in AENV (1999).

A = acute aquatic guideline exceeded; C = chronic aquatic guideline exceeded; H = human health guideline exceeded.

- no guideline / no data.

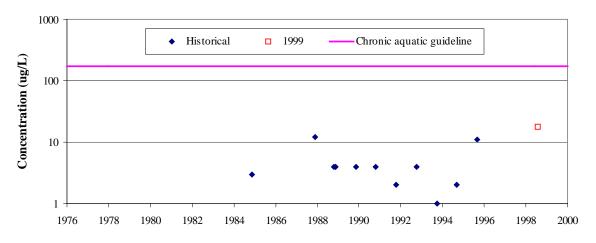

`Although substance concentrations were below detection limits, the analytical detection limit exceeded the relevant surface water guideline.

Figure 5.1 Winter Total Aluminum Concentrations in the Athabasca River near the Embarras River

Guideline based on hardness of 150 mg/L; non-detects replaced with detection limit.

Figure 5.2 Winter Total Zinc Levels in the Athabasca River near the Embarras River

Guideline based on hardness of 150 mg/L; non-detects replaced with detection limit.

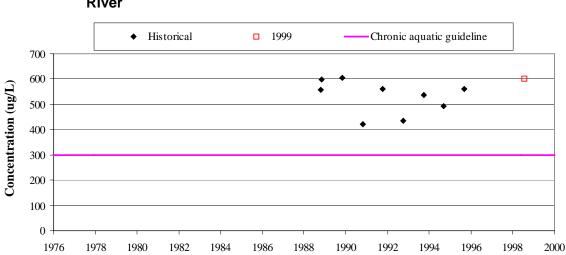


Figure 5.3 Winter Total Iron Levels in the Athabasca River near the Embarras River

Guideline based on hardness of 150 mg/L; non-detects replaced with detection limit.

As illustrated in Figures 5.4 and 5.5, TDS and total aluminum concentrations were higher in 1999 than in previous sampling events. The same was true for total barium (Appendix II, Table II-1). However, total barium concentrations in 1999 were below human health guidelines, and TDS levels in the delta were lower than TDS levels in the Athabasca River (Tables 5.1 and 5.3).

Although total aluminum levels in the Athabasca River Delta generally exceed the chronic aquatic guideline, total aluminum concentrations in 1999 exceeded both chronic and acute aquatic guidelines (Figure 5.5). Total phosphorus concentrations exceeded water quality guidelines in 1999. The historical median value for total phosphorus also exceeds the chronic aquatic guideline.

Figure 5.4 Summer Total Dissolved Solids Levels in the Athabasca River Delta

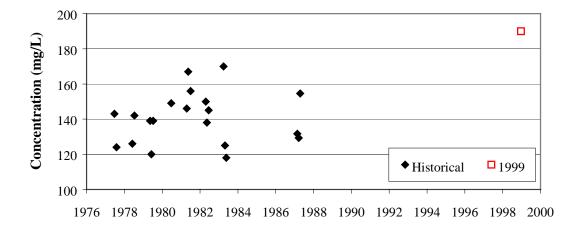
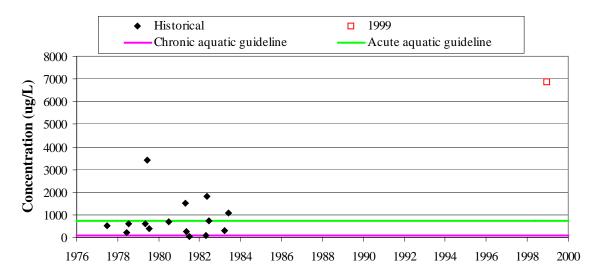



Figure 5.5 Summer Total Aluminum Concentrations in the Athabasca River Delta

Non-detects replaced with detection limit.

5.1.2 Sediment Quality

As indicated in Section 3.1.1.1, a single composite sediment sample was collected from the Athabasca River Delta in the summer of 1999. Sediment from the delta contained mainly silt, clay and some sand (Table 5.4). It was found to significantly affect the growth of *Lumbriculus variegatus* and the survival of *Chironomus tentans* and *Hyalella azteca*. PAH levels in the delta sediments are summarized in Table 5.5. Methyl naphthalene was the only compound present at concentrations in excess of Canadian Sediment Quality Guidelines.

 Table 5.4
 Sediment Characteristics in the Athabasca River Delta

Parameter	Concentration
Conventional Parameters (%)	
partice size - % sand	14
partice size - % silt	64
partice size - % clay	22
total inorganic carbon	0.8
total organic carbon	1.8
Toxicity (% of control)	
Chironomus tentans - 10 day mortality	42
C. tentans - 10 day growth	nt
Hyalella azteca - 10 day mortality	72
H. azteca - 10 day growth	nt
Lumbriculus variegatus - 10 day mortality	nt
L. variegatus - 10 day growth	62
Total Recoverable Hydrocarbons (mg/kg)	
total recoverable hydrocarbons	800
Total Metals (µg/g)	
aluminum (Al)	8850
arsenic (As)	5
barium (Ba)	166
beryllium (Be)	< 1
cadmium (Cd)	< 0.5
chromium (Cr)	25
cobalt (Co)	7
copper (Cu)	14
iron (Fe)	16800
lead (Pb)	10
manganese (Mn)	413
mercury (Hg)	0.09
molybdenum (Mo)	< 1
nickel (Ni)	22
selenium (Se)	0.6
silver (Ag)	< 1
strontium (Sr)	69
titanium (Ti)	26
vanadium (V)	21
zinc (Zn)	65

nt = non-toxic (insignificant difference between test and control sediments).

Table 5.5Concentration of Polycyclic Aromatic Hydrocarbons in Sediments
from the Athabasca River Delta

Compound	Concentration (ng/g)
naphthalene	19
methyl naphthalenes	35
C2 substituted naphthalenes	43
C3 substituted naphthalenes	54
C4 substituted naphthalenes	32
acenaphthene	< 1.4
methyl acenaphthene	3.4
acenaphthylene	< 4.3
anthracene	< 3.7
dibenzo(a,h)anthracene	< 6
benzo(a)anthracene/chrysene	31.2
methyl benzo(a)anthracene/chrysene	36
C2 substituted benzo(a)anthracene/chrysene	15
benzo(a)pyrene	13 ^(a)
methyl b(b&k)f/methyl b(a)p	< 15
C2 substituted b(b& k)f/b(a)p	< 13
benzo(b&k)fluoranthene	30
benzo(g,h,i)perylene	17
biphenyl	7.8
methyl biphenyl	< 2.1
C2 substituted biphenyl	< 1.7
dibenzothiophene	< 2.8
methyl dibenzothiophene	17
C2 substituted dibenzothiophene	75
C3 substituted dibenzothiophene	110
C4 substituted dibenzothiophene	-
fluoranthene	6.5
methyl fluoranthene/pyrene	43
fluorene	3.2 ^(a)
methyl fluorene	< 3.7
C2 substituted fluorene	< 2.7
indeno(c,d-123)pyrene	11
phenanthrene	26
methyl phenanthrene/anthracene	69
C2 substituted phenanthrene/anthracene	64
C3 substituted phenanthrene/anthracene	71
C4 substituted phenanthrene/anthracene	350
1-methyl-7-isopropyl-phenanthrene	-
pyrene	15

- = no data.

^(a) PAH concentrations are reported with the limitation that the GCMS spectra used to develop these values were ill-defined (i.e., these numbers may contain a larger degree of error than those produced from clearly defined spectra).

5.1.3 Summary

In 1999, winter water quality in the Athabasca River near the Embarras River was consistent with historical data. Summer water quality in the Athabasca River Delta in 1999 was also generally consistent with historical data, with some exceptions. TDS, total aluminum and total barium levels were higher in 1999 than in recent sampling events. Sediments from the delta were found to be chronically toxic to three species of invertebrates. Methyl naphthalene was the only element present at concentrations in excess of Canadian Sediment Quality Guidelines.

5.2 FISH POPULATIONS

5.2.1 Fish Inventory

The total number of fish species captured during the spring fish inventory was 13 (Table 5.6). The 1999 species list was comparable to the list documented in the spring of 1998, when 16 fish species were captured (Golder 1999a). Arctic grayling, river shiner and yellow perch were not captured during the 1999 survey; however, capture of these species in 1998 was limited to a few individuals. Similarly, limited numbers of mountain whitefish and burbot were captured during the spring 1999 inventory; whereas neither species was captured during the 1998 spring inventory (Golder 1999a). In general, the relative abundance of each fish species captured in the spring was similar between 1998 and 1999. During the 1999 survey, walleye was the most abundant species, followed by goldeye, white sucker, longnose sucker and flathead chub. These five species accounted for 88% of the total catch in both 1998 (Golder 1999a) and 1999 (Table 5.6).

A summary of all fish species incidentally caught during the fall collection of longnose sucker by Environment Canada and Syncrude is summarized in Table 5.7. The results of the fall collection should be used with caution because sampling was biased towards capture of longnose sucker. The total number of fish species captured during the fall collection was nine. The species list was comparable to the list documented during the fall 1998 inventory, when 12 fish species were captured (Golder 1999a). Arctic grayling, mountain whitefish, spoonhead sculpin and trout-perch were not captured in 1999; however, their abundance in the spring of 1998 was also low. Lake whitefish was the most abundant fish species observed in the fall (Van Meer, unpubl. data). The timing of the field survey corresponded with the migration of lake whitefish from Lake Athabasca to spawning grounds upstream of Fort McMurray (Jones et al. 1978). Based on catch-per-unit effort (CPUE), estimates of abundance for walleye,

goldeye, white sucker and northern pike were similar between 1998 and 1999; however, fewer longnose sucker were captured in 1999.

Table 5.6	Total Number, Percent of Total Catch and CPUE of Each Fish Species
	Captured in the Oil Sands Region, Athabasca River, May 1999

	Monitoring Reach ^(a)			Total			
Fish Species	Poplar	Steepbank	Muskeg	Tar-Ells	Number ^(a)	Percent ^(a)	CPUE ^(b)
burbot	1	1	1	0	3	0.79	0.02
emerald shiner	0	0	1	0	1	0.26	0.01
flathead chub	2	18	4	4	28	7.33	0.18
goldeye	18	21	35	8	82	21.47	0.84
lake chub	0	0	2	0	2	0.52	0.01
lake whitefish	0	0	2	2	4	1.05	0.04
longnose sucker	3	13	7	8	31	8.12	0.26
mountain whitefish	0	1	1	0	2	0.52	0.01
northern pike	3	7	9	6	25	6.54	0.34
spoonhead sculpin	0	0	0	1	1	0.26	0.01
trout-perch	0	0	7	0	7	1.83	4.66
walleye	37	77	41	13	168	43.98	1.08
white sucker	2	7	12	7	28	7.33	0.16
Total	66	145	122	49	382	100	7.62

^(a) Captured only.

^(b) CPUE, catch-per-unit-effort, is calculated from captured and observed fish (# fish/100 sec).

Fish Species	Number ^(a)	Percent ^(a)	CPUE ^(b)
emerald shiner	3	1.40	0.01
flathead chub	4	1.87	0.09
goldeye	43	20.09	0.40
lake chub	1	0.47	0.01
lake whitefish	68	31.78	7.24
longnose sucker	12	5.61	0.20
mountain whitefish	0	0	0.01
northern pike	33	15.42	0.19
trout-perch	0	0	0.06
walleye	21	9.81	0.13

Table 5.7	Total Number, Percent of Total Catch and CPUE of Each Fish Species
	Captured in the Oil Sands Region, Athabasca River, September 1999

^(a) Captured only.

white sucker

Total

^(b) CPUE is calculated from captured and observed fish (# fish/100 sec).

Walleye, lake whitefish, goldeye and longnose sucker have been identified as Key Indicator Resource (KIR) species for the Athabasca River. Based on data

29

214

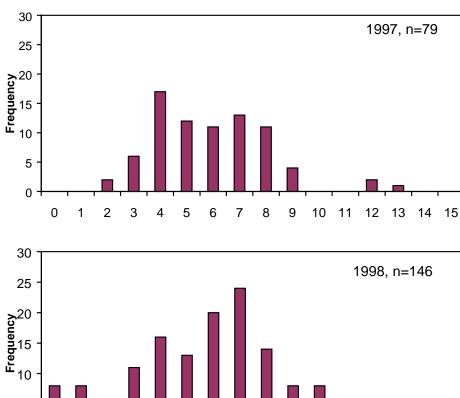
13.55

100

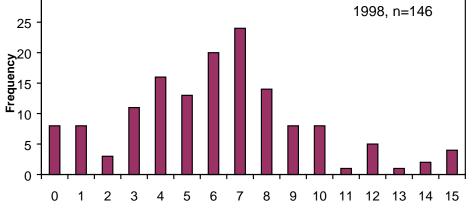
0.15

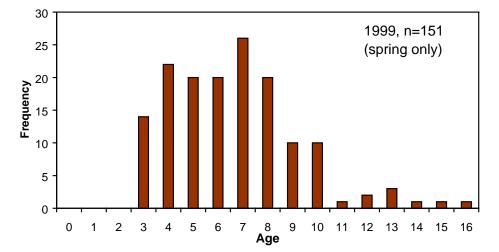
8.49

from the spring inventory, only walleye were collected in sufficient numbers to evaluate possible year-to-year changes in length distribution, age distribution and size-at-age. For length distributions, 1999 data were compared to RAMP data collected from 1995 (Golder 1996a), 1996 (Golder 1996b), 1997 (Golder 1998a) and 1998 (Golder 1999a). It was not possible to compare age distributions and size-at-age among all years due to limited sample sizes; however, comparisons were made using data from 1997-1999.

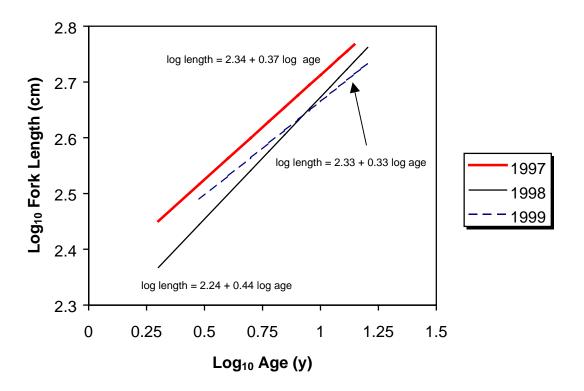

Length distributions of walleye from 1995 to 1999 are presented in Figure 5.6. In general, the distributions among years were very similar, consisting of two dominant modes centred about the 100-200 mm and 400-500 mm length classes. Based on the age distribution from 1998, these modes correspond approximately to age classes 0-3 years and 5-9 years, respectively. Smaller size classes were not represented in the 1999 distribution, probably because the fish inventory was not continued in the summer and fall. Data from 1998 indicated that 80% of walleye captured in the summer were juveniles; whereas 77% of the catch captured in spring were adults (Golder 1999a). Age distributions of walleye from 1997 to 1999 were also similar, consisting of a dominant mode ranging from four to eight years old fish (Figure 5.7). The absence of younger walleye (age 0-2 years) in 1999 again reflects seasonal differences in capture success of smaller individuals.

Annual size-at-age relationships (spring data only) for walleye from 1997 to 1999 are presented in (Figure 5.8). The slope of the regression line (i.e., rate of growth) for 1999 was significantly less than the slope for 1998 (p=0.0002). Figure 5.8 shows that walleye in 1999 were longer at a given age than walleye in 1998, until the relationship reversed at an estimated age of 7-8 years. There was no significant difference in slope relative to 1997 (p=0.25); however, walleye in 1999 were shorter at any given age (i.e., difference in intercepts, p<0.001). The reason for the change in size-at-age for walleye collected in 1999 is uncertain, but suggests a possible decrease in food availability (Gibbons and Munkittrick 1994). A similar conclusion was made in 1998 when it was found that walleye from 1998 were shorter at any given age relative to walleye collected from 1997 (Golder 1999a). Water levels in the Athabasca River during both 1998 and 1999 were extremely low relative to 1997 (Section 2.3). The effect this has had on food/habitat availability and quality is unknown.


Figure 5.6 Length-frequency Distributions for Walleye in the Oil Sands Region, Athabasca River, 1995-1999



5-12



Age-frequency Distributions for Walleye in the Oil Sands Region, Figure 5.7 Athabasca River, 1997-1999

5.2.2 Sentinel Fish Species Monitoring

Thirteen species of fish were captured or observed during the collection of troutperch (Table 5.8). Emerald shiner, trout-perch and flathead chub were the most abundant and widely distributed, small-bodied species. Of these three species, trout-perch remained the optimal species for sentinel monitoring on the Athabasca River because:

- many of the individuals captured were mature adults with obvious gonadal development;
- flathead chub can reach up to 25 cm fork length bringing into question their potential for large-scale movement; and
- gonadal development in emerald shiner during the fall survey was limited (making it difficult to assess reproductive parameters).

Camping Cito, Anabacca Airon, Fair 1000						
	Reference Site	rence Site Exposure Sites				
Fish Species	AR-R	AR-SD	AR-MR	Total		
trout-perch	435	517	311	1263		
emerald shiner	893	833	381	2107		
flathead chub	333	156	25	514		
lake chub	4	140	1	145		
spottail shiner	55	2	10	67		
sculpin sp.	0	12	1	13		
longnose sucker	54	37	11	102		
white sucker	4	2	0	6		
goldeye	10	59	16	85		
walleye	10	18	3	31		
northern pike	9	9	2	20		
lake whitefish	14	7	50	71		
burbot	1	0	2	3		
Total	1822	1792	813	4,427		
electrofishing effort (sec)	4737	4202	1678	10,617		
beach seining effort (m)	0	595	215	810		

Table 5.8Total Number of Each Fish Species Caught and Observed at Each
Sampling Site, Athabasca River, Fall 1999

^(a) Total boat electrofishing and beach seining effort is also presented.

AR-R = Athabasca River reference site; AR-SD = Athabasca River downstream of Suncor discharge; AR-MR = Athabasca River downstream of Muskeg River.

Although boat electrofishing proved effective in capturing trout-perch, beach seining at night was valuable in increasing samples sizes at accessible sites. Trout-perch were often found in the late afternoon and evening presumably because they move to shallower waters at night to feed. Due to site differences in fish collection techniques (Table 5.8), catch-per-unit-effort could not be compared among sites. The abundance of female, male and immature trout-perch collected at the reference and exposure sites is presented in Table 5.9.

Table 5.9 Total Number of Female, Male and Immature Trout-perch (Percopsis omiscomaycus) Captured for Processing, Athabasca River, Fall 1999

	Reference Site	Exposure Sites	
Sex	AR-R	AR-SD	AR-MR
female	52	67	37
male	62	30	39
immature ^(a)	5	21	0
total	119	118	76

^(a) Sacrificed due to unknown maturity.

AR-R = Athabasca River reference site; AR-SD = Athabasca River downstream of Suncor discharge; AR-MR = Athabasca River downstream of Muskeg River.

There were no large-scale differences in field water parameters measured at each fish collection site (Table 5.10). There was a small downstream decline in dissolved oxygen, but concentrations remained above the CCME guideline of 6.5 mg/L (and 9.5 mg/L for early life stages) for cold water biota (CCME 1999). Conductivity gradually increased with distance downstream. Conductivity measurements were much more variable downstream of Suncor's discharge (site SR-SD), probably reflecting variability in effluent concentration/mixing immediately downstream of the discharge.

Table 5.10 Mean Values (± SD) of Field Water Parameters Measured at Each Fish Collection Site, Athabasca River, 1999

	Reference Site	Exposure Sites	
Field Parameter	AR-R	AR-SD	AR-MR
water temperature (°C)	14.5 ± 1.0	14.4 ± 1.0	14.9 ± 0.1
dissolved oxygen (mg/L)	11.02 ± 1.50	9.93 ± 0.18	9.79 ± 0.16
conductivity (µS/cm)	294 ± 1	301 ± 20	330 ± 3
рН	8.36 ± 0.17	8.50 ± 0.21	8.33 ± 0.02

Means were calculated from measurements taken each time a site was sampled for sentinel fish (i.e., AR-R, *n*=2 sampling times; AR-SD, *n*=4; AR-MR, *n*=2).

AR-R = Athabasca River reference site; AR-SD = Athabasca River downstream of Suncor discharge; AR-MR = Athabasca River downstream of Muskeg River.

5.2.2.1 Fish Measurements

Based on external/internal pathology examinations of all trout-perch processed, the presence of abnormalities was low, ranging from 3-10% per site (Table 5.11). Trout-perch from the exposure sites did not exhibit increased abnormalities relative to reference fishes. In fact, trout-perch from the reference site (site AR-R) had the highest prevalence of abnormalities; mostly related to a few individuals that appeared to have a slightly enlarged spleen relative to remaining trout-perch.

Age distributions generated for each site (males and females combined) suggest that the age structure of adult trout-perch collected from each site is similar, and dominated by two and three year old individuals (Figure 5.9). Mean ages of male or female trout-perch were also similar among sites (Table 5.12). With the exception of the condition factor at the site downstream of the Muskeg River (site AR-MR), there were also no differences in body size among sites (Table 5.12). Male and female trout-perch from site AR-MR weighed less (i.e., they were thinner) at any given length relative to reference fish and fishes collected at site AR-SD.

Table 5.11Number of Trout-perch with Specific External/Internal Abnormalities,
Athabasca River, Fall 1999

	Reference Site		re Sites
Abnormality	AR-R	AR-SD	AR-MR
fins (erosion, split, frayed)	2	1	0
tail immobility	0	0	1
spleen (enlarged)	6	2	0
internal parasites	3	1	1
unknown cysts (internal)	0	0	1
total no. fish evaluated	119	100	76
% affected ^(a)	10.1	3.3	3.9

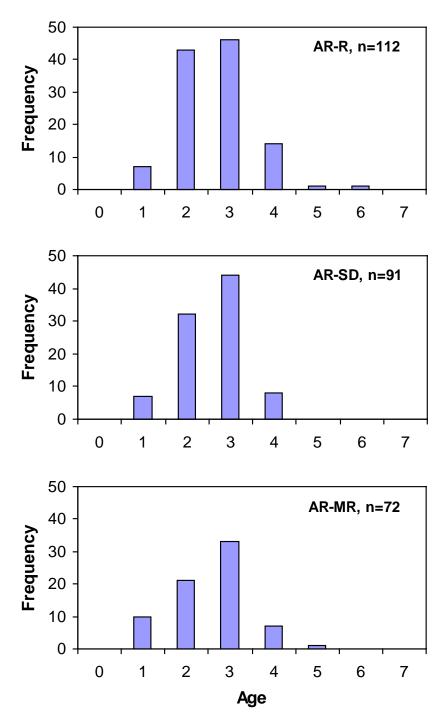
^(a) An individual fish may exhibit more than one type of abnormality.

AR-R = Athabasca River reference site; AR-SD = Athabasca River downstream of Suncor discharge; AR-MR = Athabasca River downstream of Muskeg River.

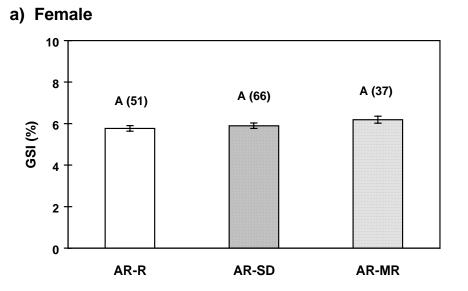
Table 5.12Mean ± SE (n) of Body Size, Age and Fecundity of Trout-perch,
Athabasca River, Fall 1999

		Reference Site	Exposure Sites	
Sex	Parameter	AR-R	AR-SD	AR-MR
Female	Fork Length (cm)	7.4 ± 0.1 (52) A	7.5 ± 0.1 (67) A	7.5 ± 0.1 (37) A
	Body Weight (g)	4.31 ± 0.13 (52) A	4.57 ± 0.15 (67) A	4.31 ± 0.19 (37) A
	K ^(a)	0.91 ± 0.01 (52) A	0.92 ± 0.01 (66) A	0.87 ± 0.01 (37) B
	Age (y)	2.8 ± 0.1 (51) A	2.8 ± 0.1 (61) A	2.6 ± 0.2 (34) A
	Fecundity (# eggs/g) ^(b)	216 ± 11 (30) A	282 ± 17 (29) A	273 ± 21 (33) A
Male	Fork Length (cm)	6.7 ± 0.1 (62) A	6.6 ± 0.1 (30) A	6.8 ± 0.1 (39) A
	Body Weight (g)	3.20 ± 0.10 (62) A	3.05 ± 0.14 (30) A	3.28 ± 0.06 (39) A
	К	0.94 ± 0.01 (62) A	0.95 ± 0.01 (30) A	0.90 ± 0.01 (39) B
	Age (y)	2.5 ± 0.1 (61) A	2.2 ± 0.2 (30) A	2.5 ± 0.2 (38) A

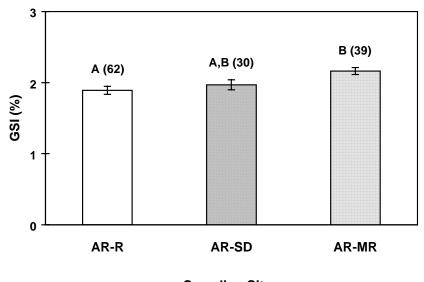
Note: Site differences in condition factor (K) and fecundity were tested using analysis of covariance. The remaining variables were examined using analysis of variance. Within a row, differences (p<0.017, Bonferroni's adjusted α) among sites are denoted by different uppercase letters. Results followed by the same letter are not significantly different.


^(a) $K = 100^{\circ}$ (carcass weight/fork length³).

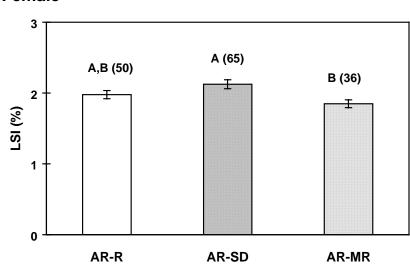
^(b) Fecundity standardized by fish size (i.e., # eggs/carcass weight).

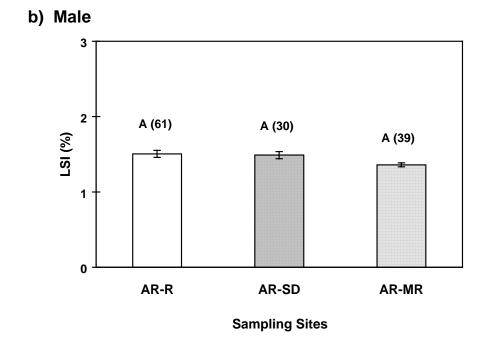

AR-R = Athabasca River reference site; AR-SD = Athabasca River downstream of Suncor discharge; AR-MR = Athabasca River downstream of Muskeg River.

Ovary and testis weights were not significantly different among reference and exposure sites (Figure 5.10). Fecundity was also found to be similar among sites (Table 5.12), although the similarity in fecundity between the reference site and site AR-SD was borderline (p=0.018 > α =0.017, Bonferroni's adjustment). Liver weights were similar among male trout-perch; however, females from site AR-MR had smaller livers compared to fishes from site AR-SD (Figure 5.11).


Figure 5.9 Age-frequency Distributions for Trout-perch at Each Sampling Site, Athabasca River, Fall 1999

AR-R = Athabasca River reference site; AR-SD = Athabasca River downstream of Suncor discharge; AR-MR = Athabasca River downstream of Muskeg River.



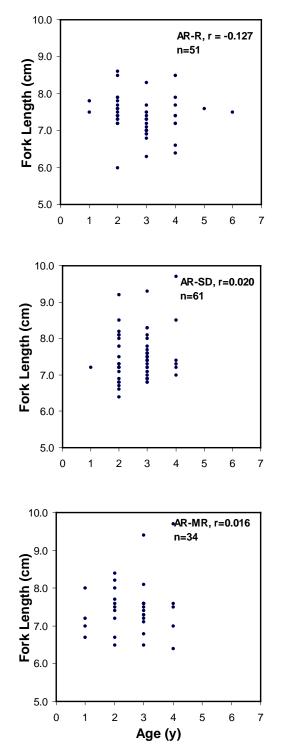

Sampling Sites

^(a) Values represent the mean ± S.E. (sample sizes in parentheses). Differences (p>0.017, Bonferroni's adjustment) among sites are denoted by different letter superscripts.

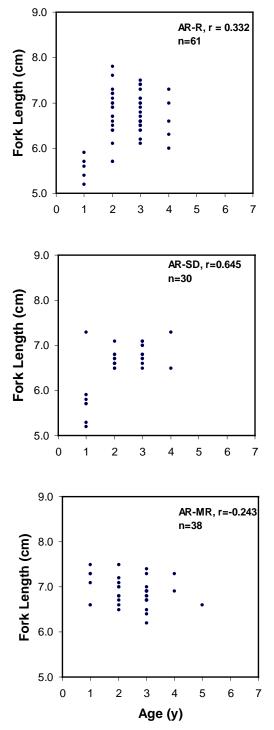
AR-R = Athabasca River reference site; AR-SD = Athabasca River downstream of Suncor discharge; AR-MR = Athabasca River downstream of Muskeg River. GSI = (gonad wt / carcass wt) x 100. Figure 5.11 Liver Somatic Index of a) Female and b) Male Trout-perch, Athabasca River, Fall 1999^(a)

a) Female

^(a) Values represent the mean \pm S.E. (sample size in parentheses). Differences (p>0.017, Bonferroni's adjustment) among sites are denoted by different letter superscripts.


AR-R = Athabasca River reference site; AR-SD = Athabasca River downstream of Suncor discharge; AR-MR = Athabasca River downstream of Muskeg River. LSI = (liver wt / carcass wt) x 100.

5-20


Size-at-age relationships (i.e., growth) among sites could not be compared. In general, the relationship between fork length (or any other estimate of size) and age of trout-perch was extremely variable and poor (Figure 5.12, 5.13). Typically, the size of adult fish increases with age in a linear fashion until an upper asymptote is reached. However, trout-perch from the Athabasca River, particularly from sites AR-R and AR-MR, do not exhibit a consistent increase in size over time. The reason for the observed variability is unknown. Similar results were not reported for other species (e.g., KIR species) collected from the Oil Sands Region during the 1998 RAMP (Golder 1999a). Some of the size-atage variability may be related to difficulties experienced in ageing trout-perch. Although other studies have had success in ageing trout-perch using otoliths (Gibbons et al. 1998) and scales (Spafford 1999), ageing trout-perch from the Oil Sands Region was difficult due to the presence of false or incomplete annuli and inconsistencies in the definition of the first annulus (J. Tost, Northshore Environmental, pers. comm.). The crack-and-burn procedure used for preparing otoliths may not be as effective for ageing trout-perch as the simpler method of reading ground and polished whole otoliths. Ages derived from scales, although limited due to problems with storage, did not significantly improve the results generated from otoliths.

Overall, there were few differences in whole organism characteristics of troutperch among the three study sites. With the possible exception of fecundity, trout-perch collected downstream of Suncor's discharge (Site AR-SD) showed no differences in body size, age or organ metrics relative to fish collected from the reference site. Trout-perch downstream of the Muskeg River did show some preliminary evidence of reduced levels of energy storage (e.g., reduced condition and female liver size) (Gibbons and Munkittrick 1994). However, unless coupled with other changes in body size, gonad size, fecundity and male liver size, this response does not provide sufficient weight of evidence for a biologically significant change.

The response (or lack of response) of trout-perch collected at the potentially "exposed" sites is not consistent with results documented for longnose sucker in 1998 (Table 5.13). There are numerous potential reasons why the discrepancy in responses may exist including species differences in life history, longevity, habitat preferences and resource utilization. However, it is particularly important to note that the reference site for trout-perch was located within the Oil Sands Region (yet upstream of potential mining influences); whereas, the reference site for longnose sucker was located a substantial distance upstream of Fort

AR-R = Athabasca River reference site; AR-SD = Athabasca River downstream of Suncor discharge; AR-MR = Athabasca River downstream of Muskeg River.

AR-R = Athabasca River reference site; AR-SD = Athabasca River downstream of Suncor discharge; AR-MR = Athabasca River downstream of Muskeg River.

5-23

McMurray and beyond the influence of the oil sands formation. The sampling design for trout-perch provides a better assessment of the potential effects specific to mining activities; whereas, the study of longnose sucker could not separate the combined influences of the oil sands formation, mining activities and the town of Fort McMurray. In addition, the reference site for the longnose sucker study was not ideal due to some differences in habitat conditions and distance from the Oil Sands Region (Golder 1999a).

Recent research by Environment Canada (J. Parrott, and J. Sherry, Burlington, Ontario) evaluated longnose sucker from the original upstream reference site, a reference site within the oil sands formation, and from an exposure site downstream of current mining activities. Although this research is still ongoing, the information will provide further clarification of the response of longnose sucker collected downstream of the oil sands developments (assuming movement of sucker among sites is minimal). Mixed function oxygenase (MFO) data for trout-perch will also add to our understanding of exposure-response relationships within the Oil Sands Region.

Although it is assumed that trout-perch are less mobile than larger fish species of the region, there is limited information that describes the extent of their movement. As such, it is difficult to definitively rule out the possibility that the similarities among responses of trout-perch are related to their ability to move from one site to the next. MFO data will help to define exposure relationships (and hence movement potential); however, there may be a need to specifically evaluate the assumption of mobility of trout-perch within the Oil Sands Region.

Table 5.13Comparative Summary of Changes in Whole-organism
Characteristics of Longnose Sucker (fall, 1998) and Trout-perch (fall,
1999) Collected from the Oil Sands Region, Athabasca River

Parameter	Longnose Sucker ^(a)	Trout-perch
fork length	+	0
body weight	+	0
condition	-	0/- ^(b)
age	0	0
gonad Size	0	0
fecundity	-	0
liver size	-	0/- ^{(b)(c)}

^(a) Data from Golder (1999a).

^(b) Separate response for sites AR-SD / AR-MR.

^(c) Decreased liver weight in females only.

^(d) + signifies an increase relative to reference data; - signifies a decrease; O signifies no change.

5.2.2.2 Sample Size Considerations

The number of fish needed to detect a 20, 30 and 50% difference (i.e., effect size or δ) in each fish parameter between sites is summarized in Table 5.14. The final results indicated that the minimum numbers of fish needed from each site were approximately 62 females and 94 males to detect a 20% difference between sites; 31 females and 46 males to detect a 30% difference; and 14 females and 20 males to detect a 50% difference. For a given effect size, the estimated sample size is related to the amount of variability observed in a particular parameter within and between study sites. From these analyses, it is apparent that estimates of age and fecundity are the most variable and require greater sample sizes relative to other measurements. The observed variability in age of adult fish is common (and real), particularly when using capture techniques that are only moderately size selective. However, as discussed previously, improved ageing techniques may also contribute to reducing some of the observed variability. Similarly, fecundity estimates are also often variable, particularly in the fall when there is still a great deal of ovarian development yet to occur prior to spring/summer spawning.

		Estimated Sample Size (# fish/site) ^(a)		
Parameter	Sex	ES=20%	ES=30%	ES=50%
fork length	female	4	4	3
	male	5	3	3
body weight	female	33	17	8
	male	33	17	8
condition	female	4	3	3
	male	4	3	3
age	female	62	31	14
	male	94	46	20
gonad weight	female	27	14	7
	male	25	13	6
fecundity	female	73	36	16
liver weight	female	25	13	6
	male	24	13	6

Table 5.14Number of Trout-Perch per Site Needed to Detect ParameterDifferences of 20, 30 and 50% between Sites

^(a) Calculations were done using \log_{10} transformed data, power=0.80 and α =0.05. ES = effect size or δ .

For both female and male trout-perch, sufficient sample sizes were collected from each site to detect at least a 30% difference among sites, and in some cases a 20% difference. The number of males captured at site AR-SD was lower than other sites, but was adequate for all measurements except age. Furthermore,

sample sizes of trout-perch were more than adequate to detect the recommended effects size criterion of $\pm 25\%$ gonad weight used for the pulp and paper Environmental Effects Monitoring (EEM) program (Environment Canada 1997).

5.2.3 Summary

Fisheries monitoring on the Athabasca River consisted of two components: 1) spring fish inventory; and 2) sentinel species monitoring.

In general, species composition and relative abundance of fishes within the Oil Sands Region were similar to that observed in the spring of 1998. Walleye was the only KIR species that was captured in sufficient numbers to evaluate length and age distributions, and size-at-age over time. Both length and age distributions remained consistent over time, although due to the lack of summer data, smaller and younger individuals were absent from the spring 1999 collection. Comparisons of size-at-age between 1997 to 1999 indicated that walleye captured in 1999 were generally shorter at a given age relative to 1997, and longer than 1998 walleye, until the relationship reversed at age 7 to 8 years. The reason for the change in size-at-age of walleye collected in 1999 is uncertain, but suggests a possible decrease in food availability. The abnormally low water levels in the Athabasca River in 1998 and 1999 may have been related to this decrease.

Based on abundance, distribution and gonadal development, trout-perch was the optimal small-bodied species for sentinel monitoring on the Athabasca River. Due to the reduced potential for large-scale movement, use of a small-bodied species facilitated selection of a reference site within the Oil Sands Region, as well as "exposed" sites in close proximity to mining/refinery activities. The resulting sampling design made it possible to specifically test the potential effects of oil sands development, separate from other influences related to the natural oil sands formation, the town of Fort McMurray and other upstream anthropogenic development. There was no evidence indicating that trout-perch collected downstream of Suncor's discharge were different from reference fish. With the exception of a possible reduction in energy storage, trout-perch downstream of the Muskeg River were also similar to fish collected below the Suncor discharge and from the reference site. Power analyses confirmed that sample sizes were adequate to detect site differences in fish parameters had they existed. Future work on trout-perch within the Oil Sands Region will need to evaluate the most effective and accurate technique for estimating age, as well as the mobility of this species.

6 TRIBUTARIES - RESULTS AND DISCUSSION

6.1 WATER AND SEDIMENT QUALITY

6.1.1 Water Quality

6.1.1.1 McLean Creek

Water quality data collected from McLean Creek in the fall of 1999 were consistent with historical data, with some exceptions. Naphthenic acids were detected at the mouth of McLean Creek in 1999 for the first time (Table 6.1). Chloride, sulphate, total dissolved solids (TDS) and barium concentrations were higher in 1999 than in 1998 and 1995 (Tables 6.1 and 6.2); pH levels were lower in 1999 than in 1998 or 1995; and dissolved iron, aluminum and manganese concentrations were lower in 1999 than in 1999 than in 1999 than in 1998 than in 1998 (dissolved metal levels were not measured in 1995). Median, minimum and maximum water temperatures observed in the summer and fall of 1999 are summarized in Table 6.3.

Total aluminum, iron and manganese concentrations in 1999 exceeded water quality guidelines (Table 6.4). This was consistent with levels observed in 1998. Detection limits reported in 1999 for total mercury and total silver exceed guideline levels, so these elements could not be evaluated with respect to regulatory guidelines.

6.1.1.2 Steepbank River

Water quality at the mouth of the Steepbank River in the winter of 1999 was consistent with historical data, with some exceptions (Tables 6.1 and 6.2). The concentrations of some parameters, including total phosphorus, iron and lead, were lower in 1999 than in previous sampling events, while dissolved iron, aluminum and manganese levels were higher in 1999 than previously observed in 1997. Sample waters were non-toxic to *Ceriodaphnia dubia* and fathead minnows. None of the parameters detected at the mouth of the Steepbank River in 1999 were found to exceed surface water quality guidelines for the protection of aquatic life or human health (Table 6.4).

					Steepbank	River (Winter)
		McLe	an Creek			Historical
Parameter	Units	1999	1998 ^(a)	1995 ^(b)	1999	Median ^(c)
Field Measured						
pН		7.1	8.3	8.0	7.7	8.0
specific conductance	µS/cm	658	650	307	572	481
temperature	°C	10.8	4	-	0.1	0.3
dissolved oxygen	mg/L	13.4	8.5	-	10.5	13.3
Conventional Parameters and Major lons	5					
chloride	mg/L	165	73	11	6	7
dissolved organic carbon	mg/L	14	13	21	8	11
sulphate	mg/L	56	38	11	17	12
total alkalinity	mg/L	251	195	133	342	314
total dissolved solids	mg/L	620	440	167	390	354
total organic carbon	mg/L	15	16	-	9	11
total suspended solids	mg/L	5	13	1	< 3	3
Nutrients and Chlorophyll a			•			•
nitrate + nitrite	mg/L	< 1	0.05	0.004	0.2	0.4
nitrogen – ammonia	mg/L	< 0.05	< 0.05	< 0.01	0.06	0.04
nitrogen – total	mg/L	0.4	0.7	< 0.1	0.7	1.0
phosphorus, total	µg/L	15	12	42	10	46
chlorophyll a	µg/L	-*	2	-	0	0.2
Biochemical Oxygen Demand						
biochemical oxygen demand	mg/L	4	< 2	-	< 2	0.8
Toxicity						
<i>Ceriodaphnia dubia</i> , 7 day reproduction - IC25	%	-	-	-	> 100	-
C. dubia, 7 day mortality - LC50	%	-	-	-	> 100	-
fathead minnow 7 day growth - IC25	%	-	-	-	> 100	-
fathead minnow 7 day mortality - LC50	%	-	-	-	> 100	-

Table 6.1 Water Quality in McLean Creek and the Steepbank River

^(a) Based on unpublished data from Suncor Energy Inc.

^(b) Based on information from Golder (1996a).

Organics naphthenic acids

total phenolics

^(c) Based on information from Golder (1998a) and NAQUADAT station AB07DA0260.

mg/L

µg/L

2

< 1

< 1

2

< 1

< 1

< 1

2

2

3

* Data discarded due to issues with data quality.

					Steepbank	River (Winter)
		McLe	an Creek	(Fall)		Historical
Parameter	Units	1999	1998 ^(a)	1995 ^(b)	1999	Median ^(c)
Total Metals			•		•	
aluminum (Al)	µg/L	330	560	60	90	40
antimony (Sb)	µg/L	< 0.8	< 0.8	< 0.2	1.1	< 0.4
arsenic (As)	µg/L	< 1	< 1	0.8	< 1	0.3
barium (Ba)	µg/L	55	39	20	103	75
cadmium (Cd)	µg/L	< 0.2	< 0.2	3	< 0.2	< 0.2
chromium (Cr)	µg/L	2	1	< 2	3	5
copper (Cu)	µg/L	4	2	-	2	2
iron (Fe)	µg/L	660	920	410	170	905
lead (Pb)	µg/L	0.2	1	< 20	0.3	3.3
manganese (Mn)	µg/L	64	68	20	22	19
mercury (Hg)	µg/L	< 0.2	< 0.2	< 0.05	< 0.2	< 0.15
molybdenum (Mo)	µg/L	0.5	0.2	4	0.6	< 3
nickel (Ni)	µg/L	3	5	< 5	4	2
selenium (Se)	µg/L	< 0.8	< 0.8	< 0.2	< 0.8	< 0.2
silver (Ag)	µg/L	< 0.4	< 0.4	< 2	< 0.4	< 1
zinc (Zn)	µg/L	17	10	24	10	67
Dissolved Metals						•
aluminum (Al)	µg/L	10	45	-	20	5.8
antimony (Sb)	µg/L	< 0.8	0.8	-	1	< 0.4
arsenic (As)	µg/L	1	< 0.4	-	< 0.4	< 0.4
barium (Ba)	µg/L	44	36	-	95	70
cadmium (Cd)	µg/L	< 0.1	< 0.1	-	< 0.1	< 0.1
chromium (Cr)	µg/L	1.2	< 0.4	-	< 0.4	< 0.4
copper (Cu)	µg/L	3	1	-	1	0.8
iron (Fe)	µg/L	250	460	-	200	< 10
lead (Pb)	µg/L	< 0.1	0.3	-	0.2	0.2
manganese (Mn)	µg/L	22	64	-	18	0.3
mercury (Hg)	µg/L	< 0.1	< 0.1	-	< 0.1	< 0.2
molybdenum (Mo)	µg/L	0.4	0.2	-	0.7	0.5
nickel (Ni)	µg/L	3	4	-	2	0.6
selenium (Se)	µg/L	< 0.4	< 0.4	-	< 0.4	< 0.4
silver (Ag)	µg/L	< 0.2	< 0.2	-	< 0.2	< 0.2
zinc (Zn)	µg/L	3	3	-	4	6

Table 6.2 Metal Levels in McLean Creek and the Steepbank River

^(a) Based on unpublished data from Suncor Energy Inc.

^(b) Based on information from Golder (1996a).

^(c) Based on information from Golder (1998a) and NAQUADAT station AB07DA0260.

	Seas	on
Location	Summer	Fall
Mouth		
median	19.4	11.8
minimum	14.5	-3.9
maximum	24.9	24.8
n	2902	3773
100 m upstream		
median	13.5	4.9
minimum	7.7	-0.1
maximum	19.5	12.4
n	2901	3774

 Table 6.3
 Summer and Fall Water Temperatures in McLean Creek, 1999

n = number of data.

Table 6.4Summary of Parameters Found to Exceed Surface Water Quality
Guidelines in McLean Creek and the Steepbank River

	Guidelines for the Protection of								k R. (Winter)
		Aquati	Aquatic Life ^(a) Human McLean Creek (Fall)					Historical	
Parameter	Units	Acute	Chronic	Health ^(b)	1999	1998	1995	1999	Median
Nutrients									
nitrogen - total	mg/L	-	1	-					С
Total metals									
aluminum (Al)	µg/L	750	100	-	С	С			
iron (Fe)	µg/L	-	300	300	СН	СН	СН		СН
lead (Pb)	µg/L	140 - 190*	5.3 - 7.4*	-			C`		
manganese (Mn)	µg/L	-	-	50	Н	Н			
mercury (Hg) ^(c)	µg/L	1.4	0.1	0.05	C H.	C H.		СН	C H)
silver (Ag)	µg/L	11 - 20*	0.1	-	C`	C`	C`	C`	C`

^(a) Guidelines taken from AENV (1999).

^(b) Guidelines taken from U.S. EPA (1999).

^(c) Using U.S. EPA and CCME guidelines, respectively, because Alberta mercury guidelines have not been finalized.

* Guidelines are hardness dependant; calculated at each sample site using the U.S. EPA method described in AENV (1999).

C = chronic aquatic guideline exceeded; H = human health guideline exceeded.

- No guideline.

`Although substance concentrations were below detection limits, the analytical detection limit exceeded the relevant surface water guideline.

6.1.1.3 Muskeg River

Seasonal water quality samples were collected from three locations in the Muskeg River. Two additional locations were sampled in the fall of 1999. Seasonal and spatial trends observed in 1999 are summarized in Table 6.5.

Golder Associates

Generally, seasonal variations observed in 1999 were consistent with historical trends, with the exception of increasing nickel concentrations in the winter of 1999 and relatively high pH levels in the spring of 1999 (Tables 6.6 and 6.7). Spatial variations observed along the length of the Muskeg River in 1999 were generally unique to this year (i.e., they were not reflected in the historical data).

Site-specific differences observed in 1999, in comparison to relevant historical data, are summarized in Table 6.8. Naphthenic acids were detected at the mouth and in the upper reaches of the Muskeg River in 1999. Waters collected near Stanley Creek in the winter of 1999 were chronically toxic to *Ceriodaphnia dubia* and fathead minnows (Table 6.6). Sample waters collected from the same location and the upper Muskeg River in the fall of 1999 were also chronically toxic to fathead minnows. There is no clear indication what agent(s) may be responsible for these results. Additional chronic toxicity testing in the upper Muskeg River will be completed in 2000; if chronic toxicity continues to be detected, a Toxicity Identification and Evaluation (TIE) will be initiated. Median, minimum and maximum water temperatures observed in the spring, summer and fall of 1999 are summarized in Table 6.9.

As in previous years, total iron concentrations throughout the Muskeg River in 1999 exceeded surface water guidelines for the protection of aquatic life and human health (Figure 6.1). Manganese levels in 8 of the 13 samples collected from the Muskeg River in 1999 exceeded the U.S. EPA human health guideline (Tables 6.10 and 6.11). Historically, Muskeg River waters generally contain manganese levels in excess of this guideline (Figure 6.2). A total phenolics concentration of 120 μ g/L was observed in the upper Muskeg River in the spring of 1999 (Table 6.6); the chronic aquatic guideline for total phenolics is 5 μ g/L. Other substances found at concentrations in excess of surface water quality guidelines in 1999 included total aluminum (five samples), total nitrogen (three samples), total phosphorus (nine samples) and total silver (one sample) (Tables 6.10 and 6.11).

Trend Observed	Affected	Trend Present in	
in 1999	Parameters	Historical Dataset	Additional Comments
Seasonal		·	
concentrations were lowest in the spring and highest in	specific conductance total alkalinity TDS	weak trend observed	in previous years, summer levels generally higher than fall concentrations
the fall / winter	total and dissolved barium	yes, total barium levels highest in late fall and winter	limited historical data
	total and dissolved nickel	no trend observed	limited historical data
	total and dissolved manganese	yes (totals only)	only in upper Muskeg River in 1999
high levels in spring	рН	no trend observed	
high levels in winter	ammonia	yes, at two of the three sample sites	
summer peak	temperature	yes	
Spatial			
concentrations	temperature	no trend observed	
increased with distance downstream	dissolved oxygen	yes, in winter and summer	
	TDS	no trend observed	
	specific conductance	no trend observed	opposite trend observed in winter and spring; no trend observed in summer and fall
	total aluminum	no trend observed	
	total and dissolved barium	no trend observed	limited historical data
concentrations	total phosphorus	no trend observed	
decreased with	total iron (winter and fall)	yes	
distance downstream	total and dissolved manganese	no trend observed	
concentrations highest in upper Muskeg River	total and dissolved organic carbon	no trend observed	

Table 6.5Seasonal and Spatial Trends Observed in the Muskeg River, 1999

		Mouth	Ca	nterra Ro	ad Crossi	ng	Upstream of	Dowr	nstream o	of Stanley (Creek	Upstream	n of Wapas	u Creek
		(Site 1)		(Site I	(Site MUR-2) Shelley Creek (Site MUR-5)				(5	Site MUR-6)			
Parameter	Units	(Fall)	Winter	Spring	Summer	Fall	(Site MUR-4)	Winter	Spring	Summer	Fall	Spring	Summer	Fall
Field Measured														
рН		8.0	7.8	8.4	7.9	8.1	7.8	7.3	8.2	7.9	7.7	10.3	7.5	7.9
specific conductance	µS/cm	655	660	387	375	635	491	545	231	371	439	220	316	352
temperature	°C	3.9	0.2	9.0	21.8	3.3	-	0.2	8.4	18.7	2.4	2.6	15.7	1.6
dissolved oxygen	mg/L	12.3	9.1	10.0	8.5	8.4	-	0.9	8.9	5.5	8.6	5.3	7.2	3.4
Conventional Parameters and Major Ion	S													
chloride	mg/L	6	2	6	2	5	4	3	2	1	2	2	1	1
dissolved organic carbon	mg/L	16	12	11	16	15	15	12	16	16	14	27	22	18
sulphate	mg/L	91	99	27	16	81	5	6	6	5	5	13	6	6
total alkalinity	mg/L	280	282	183	193	281	255	305	151	206	250	102	172	214
total dissolved solids	mg/L	405	470	240	240	460	350	280	220	240	330	190	240	270
total organic carbon	mg/L	16	14	14	19	17	18	15	16	19	17	32	27	22
total suspended solids	mg/L	3	< 3	10	3	< 3	8	7	< 3	< 3	< 3	< 3	5	16
Nutrients and Chlorophyll a														
nitrate + nitrite	mg/L	< 0.1	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1	< 0.1	< 0.1	< 0.1	< 0.1
nitrogen - ammonia	mg/L	< 0.05	0.28	< 0.05	< 0.05	< 0.05	0.08	0.96	0.06	0.07	0.14	< 0.05	< 0.05	< 0.05
nitrogen - total	mg/L	0.6	1	0.7	0.8	0.7	0.8	1.1	0.7	1	0.7	1.3	1	1.5
phosphorus, total	µg/L	8	17	39	21	16	31	39	46	42	38	101	38	143
chlorophyll a	µg/L	-*	0	-*	0	_*	-*	0	-*	0	-*	-*	0	-*
Biochemical Oxygen Demand														
biochemical oxygen demand	mg/L	< 2	< 2	2	< 2	< 2	< 2	3	< 2	< 2	< 2	< 2	< 2	< 2
Toxicity														
Ceriodaphnia dubia, 7 day reproduction - IC25	%	-	> 100	> 100	> 100	> 100	-	83	-	> 100	> 100	> 100	> 100	> 100
C. dubia, 7 day mortality - LC50	%	-	> 100	> 100	> 100	> 100	-	> 100	100	> 100	> 100	> 100	> 100	> 100
fathead minnow 7 day growth - IC25	%	-	> 100	> 100	> 100	> 100	-	> 100	> 100	> 100	> 100	> 100	> 100	> 100
fathead minnow 7 day mortality - LC50	%	-	> 100	> 100	> 100	> 100	-	> 100	> 100	> 100	9.1	> 100	> 100	13
Organics														
naphthenic acids	mg/L	1	1	< 1	4	< 1	< 1	< 1	2	< 1	1	2	< 1	< 1
total phenolics	µg/L	2	2	3	5	3	3	2	7	2	2	120	5	3
Metals (total)														
aluminum (Al)	µg/L	290	270	350	250	60	40	70	90	70	< 20	30	280	50
antimony (Sb)	µg/L	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
arsenic (As)	µg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1

Table 6.6Water Quality in the Muskeg River, 1999

		Mouth	Ca	nterra Ro	oad Crossi	ng	Upstream of	Dowr	stream o	f Stanley C	Creek	Upstream of Wapasu Creek			
		(Site 1)		(Site I	MUR-2)		Shelley Creek		(Site I	/UR-5)		(5	Site MUR-6))	
Parameter	Units	(Fall)	Winter	Spring	Summer	Fall	(Site MUR-4)	Winter	Spring	Summer	Fall	Spring	Summer	Fall	
barium (Ba)	µg/L	82	90	57	57	80	69	81	48	59	62	18	37	42	
cadmium (Cd)	µg/L	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	
chromium (Cr)	µg/L	< 0.8	3.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	
copper (Cu)	µg/L	2	2	< 1	1	2	3	< 1	< 1	1	1	< 1	2	1	
iron (Fe)	µg/L	420	1270	1860	550	840	1460	3300	1760	1720	1980	1200	570	2350	
lead (Pb)	µg/L	< 0.1	0.3	0.2	0.2	< 0.1	< 0.1	0.6	0.2	0.3	< 0.1	< 0.1	0.3	< 0.1	
manganese (Mn)	µg/L	16.4	386	117	< 127	24.1	76.5	563	56	< 127	193	88.7	< 127	335	
mercury (Hg)	µg/L	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	
molybdenum (Mo)	µg/L	< 0.1	0.2	0.1	0.2	0.1	< 0.1	< 0.1	0.1	< 0.1	< 0.1	0.2	0.1	< 0.1	
nickel (Ni)	µg/L	3	5.2	1.4	1	3.4	1.9	2.6	0.6	0.8	0.9	0.8	1.2	1.6	
selenium (Se)	µg/L	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	
silver (Ag)	µg/L	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	1.2	< 0.4	1	< 0.4	< 0.4	
zinc (Zn)	µg/L	4	9	10	15	6	10	14	10	5	7	6	13	6	
Metals (dissolved)															
aluminum (Al)	µg/L	10	10	< 10	230	< 10	< 10	20	20	10	< 10	10	260	< 10	
antimony (Sb)	µg/L	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	0.9	< 0.8	< 0.8	< 0.8	< 0.8	
arsenic (As)	µg/L	< 0.4	< 0.4	< 0.4	0.5	< 0.4	< 0.4	< 0.4	< 0.4	-	< 0.4	< 0.4	0.7	< 0.4	
barium (Ba)	µg/L	79.3	93.3	51.9	57.3	81.8	57.2	84	42.4	62.8	61.4	18.4	34	31.6	
cadmium (Cd)	µg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1	< 0.1	< 0.1	< 0.1	< 0.1	
chromium (Cr)	µg/L	< 0.4	< 0.4	0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	0.6	< 0.4	< 0.4	
copper (Cu)	µg/L	1.6	1	0.8	1.5	1.9	< 0.6	0.6	0.8	1.5	< 0.6	< 0.6	1.1	< 0.6	
iron (Fe)	µg/L	340	340	350	350	420	290	380	410	440	300	940	480	820	
lead (Pb)	µg/L	< 0.1	0.3	< 0.1	0.2	< 0.1	< 0.1	0.1	0.2	0.2	< 0.1	< 0.1	0.2	< 0.1	
manganese (Mn)	µg/L	13	377	54.3	24.2	17.3	75.6	498	47	55	191	74.3	60.4	332	
mercury (Hg)	µg/L	< 0.01	< 0.1	< 0.1	0.2	< 0.01	< 0.01	< 0.1	< 0.1	< 0.2	< 0.01	< 0.1	0.1	< 0.01	
molybdenum (Mo)	µg/L	0.1	0.1	0.2	< 0.9	0.1	< 0.1	< 0.1	0.1	-	< 0.1	0.2	< 0.9	0.1	
nickel (Ni)	µg/L	2.8	3.9	0.6	1.4	3.3	1	2	< 0.7	1.1	1	< 0.7	0.9	0.9	
selenium (Se)	µg/L	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	
silver (Ag)	µg/L	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	1.3	< 0.2	< 0.2	< 0.2	< 0.2	
zinc (Zn)	µg/L	< 2	4	6	10	2	6	2	13	5	< 2	6	9	2	

* Data discarded due to issues with data quality.

Table 6.7 Historical Water Quality in the Muskeg River (Median Values)

		Mouth (Site 1)	Ca		ad Crossi UR-2) ^(b)	ng	Upstream of Shelley Creek	Dowr		of Stanley (IUR-5) ^(d)	Creek		of Wapas te MUR-6) ⁽	
Parameter	Units	(Fall) ^(a)	Winter		Summer	Fall	(Site MUR-4) ^(c)	Winter		Summer	Fall	Spring	,	Fall
Field Measured														
рН		8.4	7.7	7.8	7.9	7.8	7.8	7.2	7.6	7.3	7.6	7.4	7.5	7.7
specific conductance	µS/cm	394	470	196	316	269	326	550	243	275	316	245	382	352
temperature	°C	6.8	0.0	8.2	16.0	7.3	4.0	0.3	13.5	15.5	3.0	7.0	15.0	5.0
dissolved oxygen	mg/L	11.0	6.8	9.5	9.0	9.4	11.4	2.7	10.0	7.3	10.5	7.6	4.1	8.1
Conventional Parameters and Major Ion	s													
chloride	mg/L	2.7	6	2	4	3	3	3		-	1	1	1	1
dissolved organic carbon	mg/L	24	20	17	23	25	-	15	-	22	23	21	25	24
sulphate	mg/L	4	5	4	5	4	3	2	1	1	3	4	4	1
total alkalinity	mg/L	150	259	102	170	141	166	299	133			94	183	167
total dissolved solids	mg/L	177	303	136	195	162	175	320	134	190	174	135	219	172
total organic carbon	mg/L	24	22	18	24	26	24	17	18	25	24	17	25	23
total suspended solids	mg/L	3.7	6	5	3	3	5	18	1	4	4	5	4	4
Nutrients and Chlorophyll a														
nitrate + nitrite	mg/L	< 0.02	0.3	< 0.016	0.04		0.017	0.01	0.01	0.02		< 0.05	< 0.05	0.03
nitrogen - ammonia	mg/L	0.055	1.11	< 0.05	0.05	0.04	0.05	0.75			0.06	0.05	< 0.05	0.08
nitrogen - total	mg/L	0.65	1.6	0.8	1.06	0.93	0.907	1.77	0.71	0.87	0.77	0.83	1.04	1.29
phosphorus, total	µg/L	34	38	31	25	28	34.5	103	34	36	35	30	50.5	36
chlorophyll a	µg/L	< 1	< 1	4	1	1	-	< 0.1	-	2	0.4	-	-	< 1
Biochemical Oxygen Demand														
biochemical oxygen demand	mg/L	1.3	3	2	0.5	2	1.7	2	1	0.5	0.8	0.6	0.5	1.9
Toxicity														
Ceriodaphnia dubia, 7 day reproduction - IC25	%	-	> 100	> 100	> 100	-	-	> 100	> 100	> 100	-	-	-	35
C. dubia, 7 day mortality - LC50	%	-	> 100	> 100	> 100	-	-	> 100	> 100	> 100	-	-	-	> 100
fathead minnow 7 day growth - IC25	%	-	> 100	> 100	> 100	-	-	73.3	> 100		-	-	-	12
fathead minnow 7 day mortality - LC50	%	-	> 100	> 100	> 100	-	-	> 100	> 100	82.2	-	-	-	> 100
Organics														
naphthenic acids	mg/L	< 1	< 1	4	-	-	-	-	-	-	-	-	-	12
total phenolics	µg/L	< 1	-	-	-	-	-	< 1	-	< 1	< 1	-	4	5
Metals (total)														
aluminum (Al)	µg/L	90	40	70	50	35	15	20	< 100	60	10	41	34	50
antimony (Sb)	µg/L	< 0.5	< 0.4	< 0.4	-	-	-	-	-	-	-	< 0.4	0.8	< 0.8
arsenic (As)	µg/L	0.95	< 0.4	< 0.4	< 5	1.5	0.35	< 0.2	0.4	< 0.2	0.3	0.5	< 0.4	1
barium (Ba)	µg/L	30	71	25	-	-	-	80	-	45	20	14	24	88
cadmium (Cd)	µg/L	< 1.6	1	< 1	< 1	< 1	< 1	< 1	< 1	< 0.2	< 1	< 1	< 0.2	< 1

		Mouth	Ca		ad Crossi	ng	Upstream of	Dowr		of Stanley C	Creek	Upstream of Wapasu Creek (Site MUR-6) ^(e)		
Parameter	Units	(Site 1) (Fall) ^(a)	Winter		UR-2) ^(b) Summer	Fall	Shelley Creek (Site MUR-4) ^(c)	Winter		IUR-5) ^(d) Summer	Fall		Summer	Fall
chromium (Cr)	µg/L	4.5	10			8	(one mon-4) < 1	1	< 1 <	3	< 1	< 1 < 1	< 0.4	< 1
copper (Cu)		1.3	2	< 1	< 1	< 1	< 1	< 1	<1	< 1	< 1	1.1	-	< 1
iron (Fe)	µg/L	960	2420	690		990	1070	6200	1150		1410	585		1210
lead (Pb)	μg/L μg/L	1.2	4	< 2		< 2	< 2	200	< 2		< 2	1		2
manganese (Mn)		48	545	38		< 53		561	30		70			84
mercury (Hg)	µg/L	< 0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.1	< 0.05		< 0.1	< 0.1		< 0.1
molybdenum (Mo)	µg/L	< 0.3	< 0.1	0.2	< 0.1	< 0.1	< 0.00	< 0.1	< 0.05	< 30	< 3	0.1	0.1	0.1
nickel (Ni)	µg/L	5	1	< 1	1	<1	< 1	< 1	1	9	< 1	3	-	
selenium (Se)	µg/L	< 0.3	< 0.4	< 0.4	< 0.2	< 0.2	0.45	< 0.2	0.4	-	0.2	< 0.4		< 0.8
silver (Ag)	µg/L	< 0.3	< 0.4	< 0.4	< 0.2	< 0.2	0.43	< 0.2	0.4	< 0.2	< 0.1	< 0.4	< 0.4	< 0.8
zinc (Zn)	µg/L	< 0.4 16	22	< 1	- 8	2	2	< 0.1 15	-	< 0.1	< 0.1 10	< 0.1 17	-	< 0.4 20
Metals (dissolved)	µg/L	10	22	1	0	Z	2	10	1	< 1	10	17	0	20
aluminum (Al)	11a/l	58.45		32	_			_				_		10
antimony (Sb)	µg/L	< 0.8	-	< 0.4	-	-		-	-	-	-		-	< 0.8
arsenic (As)	µg/L	< 0.3	0.4	< 0.4 0.5	0.35	0.4	-	-	-	-	-	0.5	0.25	< 0.3
()	µg/L	< 0.4 58.6	0.4	0.5		0.4	-	-		-	-	0.5	0.25	< 0.3 42.2
barium (Ba)	µg/L	58.6 < 0.1	-	< 0.1	-	-	-	-	-	-	-	-	-	
cadmium (Cd)	µg/L	< 0.1	- < 3	< 0.1	< 3	< 3	-	-	-	-	-	5	- 3	< 0.1
chromium (Cr)	µg/L		< 3	-	< 3	< 3	-	-	-	-	-	5	3	< 3
copper (Cu)	µg/L	1.2	-	1.3	-	-	-	-	-	-	-	-	-	1
iron (Fe)	µg/L	345	-	1030	-	-	-	-	-	-	-	-	-	890
lead (Pb)	µg/L	0.6	-	0.37	-	-	-	-	-	-	-	-	-	0.2
manganese (Mn)	µg/L	32.45	-	36	-	-	-	-	-	-	-	-	-	626
mercury (Hg)	µg/L	0.2	-	< 0.2	-	-	-	-	-	-	-	-	-	< 0.1
molybdenum (Mo)	µg/L	0.14	-	0.13	-	-	-	-	-	-	-	-	-	< 0.1
nickel (Ni)	µg/L	2.4	-	1	-	-	-	-	-	-	-	-	-	3.3
selenium (Se)	µg/L	< 0.4	< 0.2	< 0.2	< 0.2	< 0.2	-	-	-	-	-	< 0.4	< 0.2	< 0.2
silver (Ag)	µg/L	< 0.2	-	< 0.2	-	-	-	-	-	-	-	-	-	< 0.2
zinc (Zn)	µg/L	4	-	8	-	-	-	-	-	-	-	-	-	10

(a) Based on information from Golder (1996a, 1999a), R.L.&L. (1982) and NAQUADAT stations AB07DA0620/630.
 (b) Based on information from Shell (1975), Golder (1998a, 1998b), R.L.&L. (1982, 1989), unpublished monitoring data from Syncrude Canada Ltd. and NAQUADAT station AB07DA0610.
 (c) Based on information from R.L.&L. (1989).

(d) Based on information from R.L.&L. (1989), unpublished monitoring data from Syncrude Canada Ltd. and NAQUADAT station AB07DA2750.
 (e) Based on information from R.L.&L. (1989), Golder (1999a) and NAQUADAT station AB07DA0440.

- = no data.

Table 6.8	Site-specific Variations in Muskeg River Water Quality, 1999
-----------	--

				Affected Parameters at Sa	ample Site	
Variation	Sampling Event	Mouth (MUR-1)	Canterra Road Crossing (MUR-2)	Upstream of Shelley Creek (MUR-4)	Downstream of Stanley Creek (MUR-5)	Upstream of Wapasu Creek (MUR-6)
1999 levels higher then historical median values	winter	-	 ammonia total phosphorus total nickel	-	total aluminum	-
	spring	-	 total and dissolved barium pH total iron 	-	 TDS total manganese total zinc pH 	 pH total phosphorus
	summer	-		-	TDS	total aluminum
	fall	 TDS total barium total aluminum 	 total phosphorus 	TDStotal alkalinity	TDS total manganese	TSS total phosphorus
	every sampling event	-	 TDS total alkalinity sulphate total aluminum 	-	sulphate (weak trend)	 sulphate (weak trend) total iron total manganese
1999 levels lower then historical median values	winter	-	 total chromium total iron	-	TSStotal phosphorus	-
	spring	-	 dissolved aluminum dissolved lead dissolved iron total chromium 	-		total zinctotal lead
	summer		 total iron 			
	fall	 total phosphorus total chromium total manganese total zinc total iron dissolved aluminum dissolved manganese 		• total aluminum		 naphthenic acids total barium total and dissolved zinc dissolved manganese
	every sampling event	-	 total lead 	-		dissolved chromium

= no sample collected.

blank cell = no parameters higher or lower than historical medium values.

		Season	
Location	Spring	Summer	Fall
MUR-1			
median	10.6	17.8	8.6
minimum	5.9	11.9	1.4
maximum	19.6	26.6	17.0
n	1899	6624	3553
MUR-2			
median	9.6	18.3	10.3
minimum	6.7	13.5	2.3
maximum	17.6	22.7	15.4
n	1906	6624	3440
MUR-4			
median	8.7	17.2	10.5
minimum	5.4	12.4	2.6
maximum	16.8	21.3	14.4
n	1836	6624	3563
MUR-5			
median	8.7	17.1	10.2
minimum	5.9	12.4	2.9
maximum	16.8	20.5	14.2
n	1844	6624	3563
MUR-6			
median	4.0	10.2	6.5
minimum	0.7	5.7	1.2
maximum	7.4	12.2	10.7
n	1913	6624	3425

Table 6.9Spring, Summer and Fall Water Temperatures in the Muskeg River

n = number of data.

Note: Locations one to six on the Muskeg River are shown in Figure 3.4.

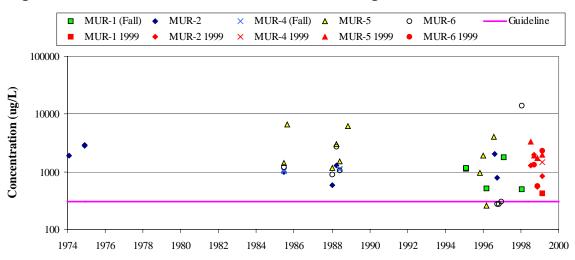
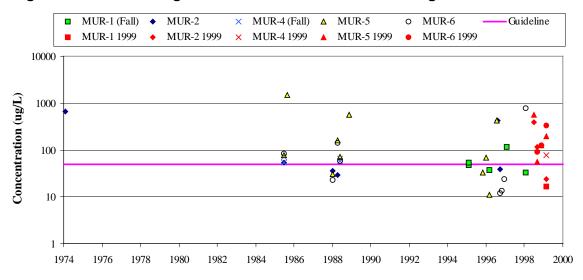



Figure 6.1 Total Iron Concentrations in the Muskeg River

Figure 6.2 Total Manganese Concentrations in the Muskeg River

Non-detects replaced with detection limit.

6-	1	4
----	---	---

		Gu	idelines fo	r the					Cante	rra Road Cr	ossing	(MUR-2)			Upstream of Shelley	
			Protection	of	Mouth (MUR-1)		N	/inter	Spring		Summer		Fall		Creek (MUR-4)	
		Aquat	ic life ^(a)	Human	Fall	Historical		Historical		Historical		Historical		Historical	Fall	Historical
Parameter	Units	Acute	Chronic	Health ^(b)	1999	Median	1999	Median	1999	Median	1999	Median	1999	Median	1999	Median
Nutrients					_	_			_	_			_		_	
nitrogen - total	mg/L	-	1	-				С				С				
Total Metals																
aluminum (Al)	µg/L	750	100	-	С		С		С		С					
iron (Fe)	µg/L	-	300	300	СН	СН	СН	СН	СН	СН	СН	СН	СН	СН	СН	СН
manganese (Mn)	µg/L	-	-	50			Н	н	Н		H,			H,	н	Н
mercury (Hg) ^(c)	µg/L	1.4	0.1	0.05	C H,	C H`	C H.	Н	C H,	H,	C H.	H,	C H.	H,	C H.	H,
silver (Ag)	µg/L	3.4 - 23*	0.1	-	C,	C,	C`	C,	C`	C,	C,		C		C,	

Table 6.10 Summary of Parameters Found to Exceed Surface Water Quality Guidelines in the Lower Muskeg River

^(a) Guidelines taken from AENV (1999).

^(b) Guidelines taken from U.S. EPA (1999).

^(c) Using U.S. EPA and CCME guidelines, respectively, because Alberta mercury guidelines have not been finalized

* Guidelines are hardness dependant; calculated at each sample site using the U.S. EPA method described in AENV (1999).

C = chronic aquatic guideline exceeded; H = human health guideline exceeded.

- No guideline.

`Although substance concentrations were below detection limits, the analytical detection limit exceeded the relevant surface water guideline.

Blank cell = no guideline exceeded.

Table 6.11 Summary of Parameters Found to Exceed Surface Water Quality Guidelines in the Upper Muskeg River

		Gui	delines fo	r the		C	owns	tream of St	anley (Creek (MUR	-5)			Upstream	of Wap	asu Creek	(MUR-	6)
		Р	rotection	of	'	Winter		Spring	S	Summer		Fall		pring	Summer		Fall	
		Aquati	c life ^(a)	Human		Historical		Historical		Historical		Historical		Historical		Historical		Historical
Parameter	Units	Acute	Chronic	${\rm Health}^{(b)}$	1999	Median	1999	Median	1999	Median	1999	Median	1999	Median	1999	Median	1999	Median
Nutrients					_				_		_		_				_	
nitrogen - total	mg/L	-	1	-	С	С							С			С	С	С
phosphorus, total	µg/L	-	50	-		С							С			С	С	
Total Phenolics					•		•											
total phenolics	µg/L	-	5	-			С						С					
Total Metals			•			•		•		•								
aluminum (Al)	µg/L	750	100	-											С			
iron (Fe)	µg/L	-	300	300	СН	СН	СН	СН	СН	СН	СН	СН	СН	СН	СН		СН	СН
manganese (Mn)	µg/L	-	-	50	Н	н	Н		H,	н	Н	Н	Н		H,		Н	Н
mercury (Hg) ^(c)	µg/L	1.4	0.1	0.05	C H.	H,	C H.		C H.	A C H`	СН	Н	C H,	H,	СН	H,	СН	H,
silver (Ag)	µg/L	3.4 - 23*	0.1	-	C,		C,		С		C,		С		C,		C,	C,

^(a) Guidelines taken from AENV (1999).

^(b) Guidelines taken from U.S. EPA (1999).

^(c) Using U.S. EPA and CCME guidelines, respectively, because Alberta mercury guidelines have not been finalized.

* Guidelines are hardness dependant; calculated at each sample site using the U.S. EPA method described in AENV (1999).

C = chronic aquatic guideline exceeded; H = human health guideline exceeded.

- No guideline.

`Although substance concentrations were below detection limits, the analytical detection limit exceeded the relevant surface water guideline. blank cell = no guideline exceeded.

6.1.1.4 Muskeg River Tributaries

Alsands Drain

Two water samples have been collected from the Alsands Drain: one in 1997 and a second in the fall of 1999. In both years, sample waters were non-toxic to bacteria and contained detectable levels of naphthenic acids (Table 6.12). Total suspended solids (TSS), TDS, sulphate, total aluminum, iron and nickel concentrations were higher in 1999 than in 1997 (Tables 6.12 and 6.13). Median, minimum and maximum water temperatures observed in the spring, summer and fall of 1999 are summarized in Table 6.14.

In 1999, total nitrogen, aluminum, iron and manganese concentrations exceeded surface water quality guidelines (Table 6.15). All of these elements, with the exception of total aluminum, were also found to exceed guidelines in 1997.

Jackpine Creek

Sample waters collected from the mouth of Jackpine Creek in the fall of 1999 were non-toxic to bacteria and contained non-detectable levels of naphthenic acids (Table 6.12). TDS, total aluminum, barium, iron and manganese levels in 1999 were higher than historical median values (Tables 6.12 and 6.13). Dissolved nickel levels were also higher in 1999 than in previous years. Trends in total aluminum and TDS concentrations are illustrated in Figures 6.3 and 6.4. Plots were not generated for barium, manganese, iron or nickel because of data limitations (i.e., less than 4 historical points of data).

Iron concentrations exceeded surface water guidelines for the protection of aquatic life and human health in 1999 and in previous sampling events (Table 6.15). In 1999, total aluminum and manganese concentrations were higher than guideline levels. Neither mercury nor silver was detected at the mouth of Jackpine Creek in 1999. However, analytical detection limits reported for these metals exceed chronic aquatic guidelines.

Shelley Creek

No historical data are available to describe fall water quality in Shelley Creek. Sample waters collected from Shelley Creek in the fall of 1999 were non-toxic to bacteria (Table 6.12). Low levels of naphthenic acids were detected, and Shelley Creek contained high TDS, total phosphorus, iron and manganese concentrations in comparison to other streams in the Muskeg River watershed. Total phosphorus, iron and manganese concentrations exceeded surface water quality guidelines (Table 6.15).

							1	
		Alsand	ls Drain		ine Creek Fall)	Shelley	Stanle	y Creek
		(F	all)		Historical	Creek	(F	all)
Parameter	Units	1999	1997	1999	Median ^(a)	(Fall 1999)	1999	1976 ^(b)
Field Measured								
рН		7.9	7.5	7.8	8.2	7.2	9.2	7.7
specific conductance	µS/cm	887	629	413	220	1172	-	315
temperature	°C	3.5	-	3.6	6.5	4.3	2.2	10.0
dissolved oxygen	mg/L	12.8	-	10.4	9.6	0.9	7.6	9.3
Conventional Parameters and Ma	ajor lons							
chloride	mg/L	1	2	6	2	80	-	0.4
dissolved organic carbon	mg/L	12	18	19	25	29	-	8
sulphate	mg/L	205	102	< 3	4	10	-	1
total alkalinity	mg/L	324	247	227	111	354	-	156
total dissolved solids	mg/L	700	440	234	126	500	-	167
total organic carbon	mg/L	14	22	18	26	33	16	11
total suspended solids	mg/L	12	4	8	5	39	-	35
Nutrients								
nitrate + nitrite	mg/L	< 0.1	< 0.05	< 0.1	< 0.003	< 0.1	< 0.1	-
nitrogen – ammonia	mg/L	0.4	0.6	< 0.05	0.03	0.6	< 0.05	-
nitrogen – total	mg/L	1.4	1.3	0.7	0.9	3.8	0.5	1.5
phosphorus, total	µg/L	15	17	42	25	331	26	245
Biochemical Oxygen Demand	•			-				
biochemical oxygen demand	mg/L	< 2	6	< 2	1	7	< 2	-
Toxicity ^(c)								
Microtox IC50 @ 15 min	%	> 91	> 91	> 91	> 91	> 91	> 91	-
Microtox IC25 @ 15 min	%	> 91	> 91	> 91	> 91	> 91	> 91	-
Organics								
naphthenic acids	mg/L	1	1	< 1	< 1	1	< 1	-
total phenolics	µg/L	4	4	4	1	2	2	-

Table 6.12Water Quality in the Alsands Drain and Jackpine, Shelley and Stanley
Creeks

(a) Based on information from Golder (1996a, 1998b), R.L.&L. (1982, 1989) and NAQUADAT stations AB07DA0600.

^(b) Based on information from NAQUADAT station AB07DA0490 (n=2).

^(c) Microtox[®] results are interpreted as the percentage strength of sample water that had a non-toxic response. The higher the percentage, the less dilution required to make the sample non-toxic (i.e., higher percentages indicate lower toxicity). Since the test organisms live in water, there is always a slight dilution (<9%) of sample waters with the introduction of the test organisms; hence, a result of >91% (instead of a reading of 100%) indicates that test waters are non-toxic.

- = no data.

Stanley Creek

Limited historical information is available to describe fall water quality in Stanley Creek. Major ions, TDS and dissolved oxygen levels in 1999 were consistent with historical data (Table 6.12). Stanley Creek was more basic in 1999 than when last sampled in 1976. Total aluminum and total phosphorus levels were lower in 1999 than in 1976. Naphthenic acid concentrations were below detection limits, and sample waters were non-toxic to bacteria. None of

Golder Associates

the parameters detected at the mouth of Stanley Creek in 1999 were found to exceed surface water quality guidelines for the protection of aquatic life and human health (Table 6.15).

Table 6.13	Metal Levels in the Alsands Drain and Jackpine, Shelley and Stanley
	Creeks

			ls Drain		ine Creek Fall) Historical	Shelley Creek		y Creek all)
Parameter	Units	(F 1999	all) 1997	1999	Median ^(a)	(Fall 1999)	(F 1999	1976 ^(b)
Total Metals		1000	1007	1000	Mealan	(1 01 1000)	1000	1370
aluminum (Al)	µg/L	440	35	120	51	60	20	55
antimony (Sb)	µg/L	< 0.8	< 0.4	< 0.8	0.4	< 0.8	< 0.8	-
arsenic (As)	µg/L	< 1	< 0.4	< 1	0.5	< 1	< 1	< 1
barium (Ba)	µg/L	189	118	49	19	175	37	-
cadmium (Cd)	µg/L	< 0.2	< 0.2	< 0.2	< 1	< 0.2	< 0.2	-
chromium (Cr)	µg/L	< 0.8	< 0.4	< 0.8	1.5	1.2	< 0.8	-
copper (Cu)	µg/L	2	2.6	< 1	< 1	< 1	< 1	-
iron (Fe)	µg/L	1460	700	1570	580	5300	290	-
lead (Pb)	µg/L	0.9	0.3	< 0.1	< 2	< 0.1	< 0.1	-
manganese (Mn)	µg/L	253	244	58	16	1630	23.1	-
mercury (Hg)	µg/L	< 0.2	< 0.1	< 0.2	< 0.1	< 0.2	< 0.2	< 0.2
molybdenum (Mo)	µg/L	0.3	< 0.1	0.1	1.6	0.1	< 0.1	-
nickel (Ni)	µg/L	3.5	0.4	1.6	< 2.5	1.7	0.4	-
selenium (Se)	µg/L	< 0.8	< 0.4	< 0.8	< 0.2	< 0.8	< 0.8	-
silver (Ag)	µg/L	< 0.4	< 0.1	< 0.4	5	< 0.4	< 0.4	-
zinc (Zn)	µg/L	11	10	7	26	5	4	-
Dissolved Metals							-	
aluminum (Al)	µg/L	< 10	-	< 10	58	< 10	20	-
antimony (Sb)	µg/L	< 0.8	-	< 0.8	< 0.4	< 0.8	< 0.8	-
arsenic (As)	µg/L	< 0.4	-	< 0.4	0.4	< 0.4	< 0.4	-
barium (Ba)	µg/L	162	-	44	17	107	39	-
cadmium (Cd)	µg/L	< 0.1	-	< 0.1	< 0.1	< 0.1	< 0.1	-
chromium (Cr)	µg/L	< 0.4	-	< 0.4	< 3	< 0.4	< 0.4	< 3
copper (Cu)	µg/L	0.8	-	< 0.6	2.2	0.7	1.2	-
iron (Fe)	µg/L	540	-	280	340	1610	240	-
lead (Pb)	µg/L	< 0.1	-	< 0.1	0.7	< 0.1	< 0.1	-
manganese (Mn)	µg/L	254	-	49	44	1630	22	-
mercury (Hg)	µg/L	< 0.1	-	< 0.01	< 0.2	< 0.01	< 0.01	-
molybdenum (Mo)	µg/L	0.2	-	< 0.1	0.1	< 0.1	0.2	-
nickel (Ni)	µg/L	3.3	-	1.2	0.2	1.4	0.2	-
selenium (Se)	µg/L	< 0.4	-	< 0.4	< 0.2	< 0.4	< 0.4	-
silver (Ag)	µg/L	< 0.2	-	< 0.2	< 0.2	< 0.2	< 0.2	-
zinc (Zn)	µg/L	4	-	2	16	< 2	3	-

^(a) Based on information from Golder (1997b), R.L.&L. (1982, 1989) and NAQUADAT stations AB07DA0600.

^(b) Based on information from NAQUADAT station AB07DA0490 (n=2).

- = no data.

Table 6.14	Spring, Summer and Fall Water Temperatures in the Alsands Drain	
------------	---	--

		Season	
Statistic	Spring	Summer	Fall
median	11.8	19.4	12.1
minimum	6.6	13.4	-3.9
maximum	21.5	26.7	24.8
n	1903	6624	3916

n = number of data.

Table 6.15Summary of Parameters Found to Exceed Surface Water Quality
Guidelines in the Alsands Drain and Jackpine, Shelley and Stanley
Creeks

		Guideline	s for the Pr	otection of	Alsand	ls Drain	Jackpine	e Creek (Fall)	Shelley	Stanle	y Creek
		Aquati	c life ^(a)	Human	(F	all)		Historical	Creek	(F	all)
Parameter	Units	Acute	Chronic	Health ^(b)	1999	1997	1999	Median	(Fall 1999)	1999	1976
Nutrients											
nitrogen - total	mg/L	-	1	-	С	С					С
phosphorus, total	µg/L	-	50	-					С		С
Total Metals											
aluminum (Al)	µg/L	750	100	-	С		С				-
iron (Fe)	µg/L	-	300	300	СН	СН	СН	СН	СН		-
manganese (Mn)	µg/L	-	-	50	Н	Н	Н		Н		-
mercury (Hg) ^(c)	µg/L	1.4	0.1	0.05	СН	H,	C H.	Н`	C H)	СН	СН
silver (Ag)	µg/L	3.4 - 30*	0.1	-	C,		C,		C`	C`	-

^(a) Guidelines taken from AENV (1999).

^(b) Guidelines taken from U.S. EPA (1999).

^(c) Using U.S. EPA and CCME guidelines, respectively, because Alberta mercury guidelines have not been finalized.

* Guidelines are hardness dependant; calculated at each sample site using the U.S. EPA method described in AENV (1999) .

C = chronic aquatic guideline exceeded; H = human health guideline exceeded.

- No guideline / no data.

`Although substance concentrations were below detection limits, the analytical detection limit exceeded the relevant surface water guideline.

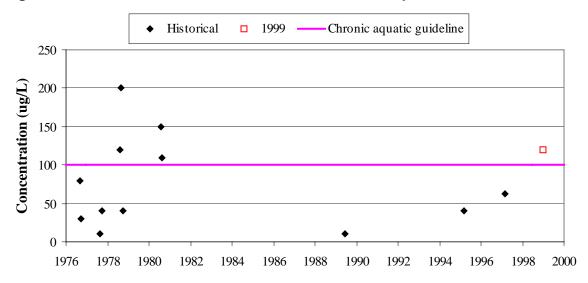
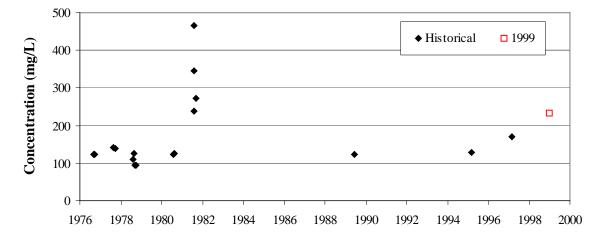



Figure 6.3 Fall Total Aluminum Concentrations in Jackpine Creek

Non-detects replaced with detection limit.

Muskeg Creek

As observed in 1998 (Golder 1999a), TDS and major ion concentrations at the mouth of Muskeg Creek were higher in 1999 than in previous years (Table 6.16). Total aluminum, total iron and total manganese levels were also higher in 1999 than in previous years (Tables 6.16 and 6.17). Naphthenic acids were present at detectable levels in 1999, but sample waters were non-toxic to bacteria.

Total iron and total manganese concentrations exceeded surface water quality guidelines in 1999 (Table 6.18); these guidelines have been exceeded in previous sampling events (Figures 6.5 and 6.6). Total aluminum concentrations were below guidelines in 1999 and in all previous sampling events. However, total aluminum levels in Muskeg Creek appear to be increasing over time (Figure 6.7), possibly in relation to increasing TSS levels in the creek (Figure 6.8).

Wapasu Creek

Water samples collected from Wapasu Creek in the winter and fall of 1999 were non-toxic to bacteria and contained non-detectable levels of naphthenic acids (Table 6.16). The winter water sample was non-toxic to *Ceriodaphnia dubia* and fathead minnows. In both the fall and winter of 1999, TDS and chlorophyll *a* levels were higher in Wapasu Creek than in previous sampling events, while total phosphorus concentrations were lower in 1999 than in previous years (Appendix II, Table II-9). Total and dissolved metal concentrations in 1999 were comparable with historical median values, with the exception of total aluminum (winter only), total iron (winter and fall) and total zinc (winter only) (Table 6.17).

In the winter of 1999, total phosphorus, phenolics, aluminum, iron and manganese concentrations exceeded surface water guidelines (Table 6.15). All of these parameters, except for aluminum, have been observed at concentrations in excess of guideline levels in previous years. Total aluminum concentrations over time are illustrated in Figure 6.9. In the fall of 1999, only total iron and manganese concentrations exceeded guidelines. Historical median values for fall also exceed these guidelines.

		Musl	keg Creek		Wapas	u Creel	(
			(Fall)	v	Vinter		Fall
			Historical		Historical		Historical
Parameter	Units	1999	Median ^(a)	1999	Median ^(b)	1999	Median ^(c)
Field Measured							
рН		7.6	7.7	7.8	8.0	8.2	7.6
specific conductance	µS/cm	585	192	572	-	318	212
temperature	°C	2.8	5.0	0.4	0.0	4.0	3.0
dissolved oxygen	mg/L	7.2	10.7	4.3	9.0	8.6	11.6
Conventional Parameters and Major Ion	S			-			
chloride	mg/L	23	1	1	2	2	1
dissolved organic carbon	mg/L	21	25	8	31	18	13
sulphate	mg/L	8	3	8	6	5	2
total alkalinity	mg/L	297	110	327	231	176	119
total dissolved solids	mg/L	339	127	350	266	240	130
total organic carbon	mg/L	21	30	10	33	22	24
total suspended solids	mg/L	7	1	7	23	3	7
Nutrients and Chlorophyll a							
nitrate + nitrite	mg/L	< 0.1	0.01	< 0.1	0.1	< 0.1	0.01
nitrogen – ammonia	mg/L	0.07	0.04	0.34	0.21	< 0.05	0.07
nitrogen - total	mg/L	1.0	0.8	0.5	1.9	0.9	1.0
phosphorus, total	µg/L	42	34	96	200	20	37
chlorophyll a	µg/L	-*	< 1	7	< 1	-*	2
Biochemical Oxygen Demand				-			
biochemical oxygen demand	mg/L	< 2	2	2	< 2	< 2	2
Toxicity							
Microtox IC50 @ 15 min	%	> 91	> 91	> 91	> 91	> 91	-
Microtox IC25 @ 15 min	%	> 91	> 91	> 91	> 91	> 91	-
<i>Ceriodaphnia dubia</i> , 7 day reproduction - IC25	%	-	15	> 100	> 100	-	-
C. dubia, 7 day mortality - LC50	%	-	> 100	> 100	> 100	-	-
fathead minnow 7 day growth - IC25	%	-	-	> 100	> 100	-	-
fathead minnow 7 day mortality - LC50	%	-	-	> 100	> 100	-	-
Organics							
naphthenic acids	mg/L	2	< 1	< 1	< 1	< 1	-
total phenolics	µg/L	5	5	6	6	2	-

Table 6.16 Water Quality in Muskeg and Wapasu Creeks

^(a) Based on information from Golder (1996a, 1999a), R.L.&L. (1989) and NAQUADAT stations AB07DA0500/530.

^(b) Based on information from Golder (1999a), R.L.&L. (1989) and NAQUADAT station AB07DA0480.

^(c) Based on information from R.L.&L. (1989) and NAQUADAT station AB07DA0480.

- = no data.

* Data discarded due to issues with data quality.

		Musk	keg Creek		Wapas	u Cree	k
			(Fall)	v	Vinter		Fall
			Historical		Historical		Historical
Parameter	Units	1999	Median ^(a)	1999	Median ^(b)	1999	Median ^(c)
Total Metals		1					
aluminum (Al)	µg/L	70	20	120	35	20	20
antimony (Sb)	µg/L	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	-
arsenic (As)	µg/L	< 1	0.7	< 1	< 1	< 1	0.7
barium (Ba)	µg/L	51	53	66	59	29	-
cadmium (Cd)	µg/L	< 0.2	< 1	< 0.2	< 1	< 0.2	< 1
chromium (Cr)	µg/L	< 0.8	1	< 0.8	1.7	< 0.8	< 1
copper (Cu)	µg/L	< 1	< 1	< 1	2	< 1	< 1
iron (Fe)	µg/L	1810	395	2370	1945	600	945
lead (Pb)	µg/L	< 0.1	< 2	0.6	< 2	< 0.1	< 2
manganese (Mn)	µg/L	350	21	697	705	74	63
mercury (Hg)	µg/L	< 0.2	< 0.1	< 0.2	< 0.1	< 0.2	< 0.1
molybdenum (Mo)	µg/L	< 0.1	< 3	< 0.1	0.4	< 0.1	-
nickel (Ni)	µg/L	1.6	< 1	3	4.1	2	< 1
selenium (Se)	µg/L	< 0.8	0.7	< 0.8	< 0.8	< 0.8	0.4
silver (Ag)	µg/L	< 0.4	3	< 0.4	< 0.4	< 0.4	-
zinc (Zn)	µg/L	7	4	4	10	< 4	4
Dissolved Metals							
aluminum (Al)	µg/L	< 10	30	30	50	< 10	-
antimony (Sb)	µg/L	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	-
arsenic (As)	µg/L	< 0.4	< 0.5	< 0.4	< 1	< 0.4	< 1
barium (Ba)	µg/L	48	63	59	53.2	28	-
cadmium (Cd)	µg/L	< 0.1	< 0.1	< 0.1	0.1	< 0.1	-
chromium (Cr)	µg/L	< 0.4	< 3	< 0.4	< 3	< 0.4	< 3
copper (Cu)	µg/L	< 0.6	0.7	0.7	2.6	< 0.6	-
iron (Fe)	µg/L	350	1020	400	1130	420	-
lead (Pb)	µg/L	< 0.1	0.1	0.2	0.8	< 0.1	-
manganese (Mn)	µg/L	319	522	718	866	70	-
mercury (Hg)	µg/L	< 0.01	< 0.1	< 0.1	< 0.1	< 0.01	-
molybdenum (Mo)	µg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
nickel (Ni)	µg/L	1.1	3.5	2.9	3.3	0.7	-
selenium (Se)	µg/L	< 0.4	< 0.4	< 0.4	< 0.5	< 0.4	< 0.5
silver (Ag)	µg/L	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-
zinc (Zn)	µg/L	2	4	5	12	< 2	-

Table 6.17 Metal Levels in Muskeg and Wapasu Creeks

^(a) Based on information from Golder (1996a 1999a), R.L.&L. (1989) and NAQUADAT stations AB07DA0500/530.

^(b) Based on information from Golder (1999a), R.L.&L. (1989) and NAQUADAT station AB07DA0480.

^(c) Based on information from R.L.&L. (1989) and NAQUADAT station AB07DA0480.

- = no data.

Table 6.18Summary of Parameters Found to Exceed Surface Water Quality
Guidelines in Muskeg and Wapasu Creeks

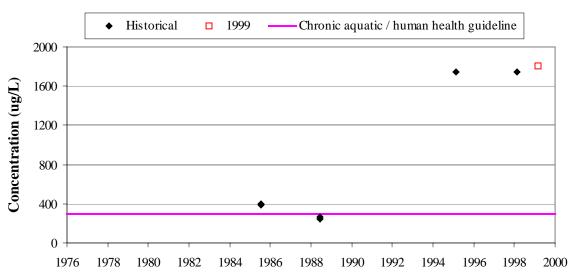
								Upper Wap	oasu Cre	ek
		Guidelin	es for the P	rotection of	Muskeg	Creek (Fall)	v	Vinter	Fall	
		Aquat	ic Life ^(a)			Historical		Historical		Historical
Parameter	Units	Acute	Chronic	Health ^(b)	1999	Median	1999	Median	1999	Median
Nutrients										
nitrogen - total	mg/L	-	1	-				С		
phosphorus, total	µg/L	-	50	-			С	С		
Total Phenolics										•
total phenolics	µg/L	-	5	-			С	С		-
Total Metals										
aluminum (Al)	µg/L	750	100	-			С			
iron (Fe)	µg/L	-	300	300	СН	СН	СН	СН	СН	СН
manganese (Mn)	µg/L	-	-	50	Н		Н	Н	Н	Н
mercury (Hg) ^(d)	µg/L	1.4	0.1	0.05	C H.	Н`	СН	H,	СН	H,
silver (Ag)	µg/L	3.4 - 23*	0.1	-	C`	A C	C,	C`	Ć	-

^(a) Guidelines taken from AENV (1999).

(b) Guidelines taken from U.S. EPA (1999).

(c) Using U.S. EPA and CCME guidelines, respectively, because Alberta mercury guidelines have not been finalized.

* Guidelines are hardness dependant; calculated at each sample site using the U.S. EPA method described in AENV (1999).


C = chronic aquatic guideline exceeded; H = human health guideline exceeded.

- No guideline / no data.

`Although substance concentrations were below detection limits, the analytical detection limit exceeded the relevant surface water guideline.

blank cells = no guideline exceeded.

Golder Associates

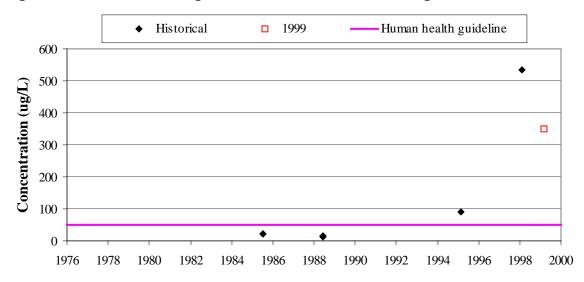
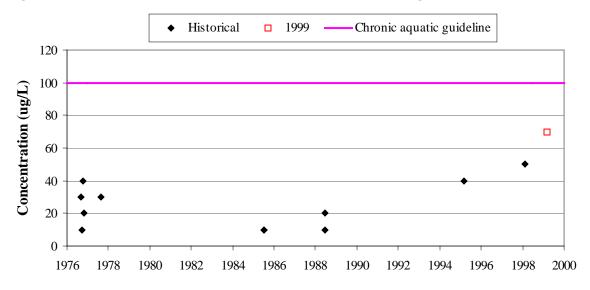
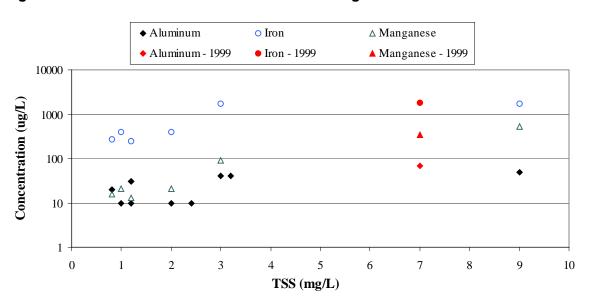
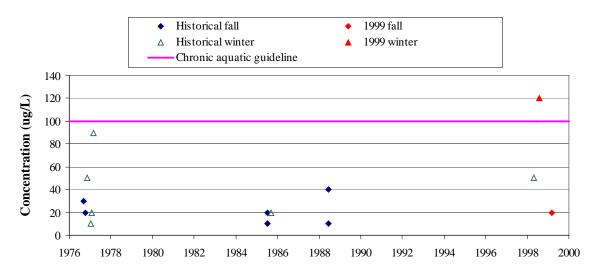




Figure 6.6 Fall Total Manganese Concentrations in Muskeg Creek

Figure 6.7 Fall Total Aluminum Concentrations in Muskeg Creek



Non-detects replaced with detection limit.

Figure 6.8 Total Metal Concentrations in Muskeg Creek Relative to TSS Levels

6.1.2 Sediment Quality

6.1.2.1 McLean Creek

Sediments collected from the mouth of McLean Creek in 1999 contained mainly silt, with some clay and little sand (Table 6.19). McLean Creek sediments were found to significantly affect the growth of two test organisms, *Chironomus tentans* and *Hyalella azteca*. Growth of *Lumbriculus variegatus* was not affected, and there was no significant mortality observed with any of the test species. Total aluminum, barium, cobalt, copper, magnesium, nickel, vanadium and zinc levels were higher at the mouth of McLean Creek than in sediments at the mouth of the Muskeg River.

Sediment from McLean Creek generally contained higher polycyclic aromatic hydrocarbon (PAH) concentrations than sediments from either the Muskeg River (Table 6.20) or the Athabasca River Delta (Table 5.5). Arsenic, methyl naphthalene, benzo(a)anthracene / chrysene, and phenanthrene levels at the mouth of McLean Creek exceeded Canadian Sediment Quality Guidelines (Table 6.21). Detection limits reported in 1999 for dibenzo(a,h)anthracene exceed the Canadian Interim Freshwater Guideline (Table 6.21), so it is unclear if sediment dibenzo(a,h)anthracene concentrations exceeded this guideline.

6.1.2.2 Muskeg River

Two sediment samples from the mouth of the Muskeg River were analyzed in 1999. One sample was collected in 1999; the other sample was collected by AENV in 1998 and submitted to RAMP for analysis in October 1999. Environment Canada submitted analytical results to RAMP in 1999 for a sediment sample that was collected from the upper Muskeg River in 1998. All of these results are discussed herein.

Muskeg River Mouth

Sand, silt and clay content of sediments collected in 1999 from the mouth of the Muskeg River was similar to samples from previous years (Table 6.19). Recoverable hydrocarbon concentrations were lower in the 1999 sample than in 1998 or 1997. In contrast, total aluminum, chromium and titanium levels were higher in 1999 than in previous years. The 1999 sediment sample did not significantly affect the growth or survival of three species of invertebrates.

		м	McLean Creek		
Parameter	Units	1999	(Mouth) 1998	1997	(1999)
Conventional Parameters	U IIIIO	1333	1990	1331	(1999)
	%	60	70	00	10
partice size - % sand		68	-	89	10
partice size - % silt	%	20	20	6.3	60
partice size - % clay	%	12	10	4.7	30
total inorganic carbon	% by wt	1.4	1.2	-	1.1
total organic carbon	% by wt	1.2	1.5	3.0	2.3
Toxicity				1	
Chironomus tentans - 10 day mortality	% of control	nt	-	-	nt
C. tentans – 10 day growth	% of control	nt	-	-	49
Hyalella azteca - 10 day mortality	% of control	nt	-	-	nt
<i>H. azteca</i> - 10 day growth	% of control	nt	-	-	68
Lumbriculus variegatus - 10 day mortality	% of control	nt	-	-	nt
L. variegatus - 10 day growth	% of control	nt	-	-	nt
Total Recoverable Hydrocarbons					
total recoverable hydrocarbons	mg/kg	800	2040	3440	900
Metals (total)					
aluminum (Al)	µg/g	9030	7480	2970	15500
antimony (Sb)	µg/g	< 0.02	< 0.1	< 0.1	-
arsenic (As)	µg/g	3	3	1	6
barium (Ba)	µg/g	120	113	40	205
beryllium (Be)	µg/g	< 1	< 1	< 1	< 1
cadmium (Cd)	µg/g	< 0.5	< 0.5	< 0.5	< 0.5
chromium (Cr)	µg/g	25	14	7	29
cobalt (Co)	µg/g	5	6	3	12
copper (Cu)	µg/g	10	9	7	24
iron (Fe)	µg/g	16300	21000	11200	24600
lead (Pb)	µg/g	8	7	< 5	12
manganese (Mn)	µg/g	576	583	373	682
mercury (Hg)	µg/g	0.05	0.03	0.04	0.04
molybdenum (Mo)	µg/g	< 1	< 1	< 1	< 1
nickel (Ni)	µg/g	18	14	6	33
selenium (Se)	µg/g	0.3	0.2	< 0.1	0.4
silver (Ag)	µg/g	< 1	< 1	< 1	< 1
strontium (Sr)	µg/g	67	62	75	95
titanium (Ti)	µg/g	52	24	10	55
vanadium (V)	µg/g	22	20	9	38
zinc (Zn)	µg/g µg/g	39	45	26	81

Table 6.19 Sediment Characteristics in the Muskeg River and McLean Creek

- = no data.

nt = non-toxic (insignificant difference between test and control sediments).

Table 6.20Concentration of Polycyclic Aromatic Hydrocarbons in Sediments
from McLean Creek and the Muskeg River

		Muskeg River				McLean
		Mouth			Upper	Creek
Parameter	Units	1999	1998 ^(a)	1997	(1998) ^(b)	(1999)
naphthalene	ng/g	14	*18	< 3	6	27
methyl naphthalenes	ng/g	20	15	< 3	21	64
C2 substituted naphthalenes	ng/g	22	18	< 20	97	81
C3 substituted naphthalenes	ng/g	23	16	40	27	92
C4 substituted naphthalenes	ng/g	4.5	< 2.2	60	18	51
acenaphthene	ng/g	< 2.6	< 4	< 3	0.4	< 3.4
methyl acenaphthene	ng/g	2.8	< 1.1	< 20	-	8.4
acenaphthylene	ng/g	< 3.5	< 1	< 3	0.4	< 4
anthracene	ng/g	< 2	< 3.1	< 3	0.4	< 2.6
dibenzo(a,h)anthracene	ng/g	< 3.7	< 21	< 3	nd	< 10
benzo(a)anthracene/chrysene	ng/g	16.5	*16	35	12	60.7
methyl benzo(a)anthracene/chrysene	ng/g	17	< 2.5	70	5	56
C2 substituted benzo(a)anthracene/chrysene	ng/g	9.2	< 1.7	130	5.2	10
benzo(a)pyrene	ng/g	< 5.1	< 10	13	nd	< 14
methyl b(b&k)f/methyl b(a)p	ng/g	< 12	< 8.6	90	164	< 31
C2 substituted b(b& k)f/b(a)p	ng/g	< 9.2	< 5.7	100	-	< 14
benzo(b&k)fluoranthene	ng/g	11	< 12	14	5.6	38
benzo(g,h,i)perylene	ng/g	*11	*14	12	14	24
biphenyl	ng/g	4.4	< 1.1	< 20	-	11
methyl biphenyl	ng/g	< 2.3	< 0.96	< 20	-	< 3.2
C2 substituted biphenyl	ng/g	< 1.6	< 0.55	< 20	-	< 3.3
dibenzothiophene	ng/g	1.9	< 1.2	< 3	2.6	3.6
methyl dibenzothiophene	ng/g	11	< 10	< 20	53	23
C2 substituted dibenzothiophene	ng/g	42	< 4.2	110	98	76
C3 substituted dibenzothiophene	ng/g	82	< 3.6	210	27	130
fluoranthene	ng/g	2.7	2.8	3	1.9	10
methyl fluoranthene/pyrene	ng/g	16	17	70	-	65
fluorene	ng/g	2	2.7	< 3	2.8	5.6
methyl fluorene	ng/g	< 1.9	< 2.2	< 20	29	< 4.3
C2 substituted fluorene	ng/g	< 2	< 3	60	70	< 2.7
indeno(c,d-123)pyrene	ng/g	*6.4	< 13	6	nd	*14
phenanthrene	ng/g	14	9.8	7	11	45
methyl phenanthrene/anthracene	ng/g	41	24	40	42	120
C2 substituted phenanthrene/anthracene	ng/g	40	40	100	60	96
C3 substituted phenanthrene/anthracene	ng/g	36	51	180	nd	120
C4 substituted phenanthrene/anthracene	ng/g	150	36	110	nd	420
pyrene	ng/g	6	5.1	12	3.7	26

^(a) Sample collected by AENV, submitted to RAMP for analysis in 1999.

(b) Sample analyzed by Environment Canada.

- = no data; nd = concentration < analytical detection limits.

* PAH concentrations are reported with the limitation that the GCMS spectra used to develop these values were ill-defined (i.e., these numbers may contain a large degree of error than those produced from clearly defined spectra).

Table 6.21Summary of Parameters Found to Exceed Canadian Sediment
Quality Guidelines in McLean Creek and the Muskeg River

		Sediment Guidelines ^(a)		Muskeg River Mouth				McLean
Parameter	Units	ISQG ^(b)	PEL ^(c)	1999	1998	1997	Upper	Creek
Metals (total)	<u> </u>							
arsenic (As)	µg/g	5.9	17				-	ISQG
Target PAHs and Alkylated PA	Hs				•			
methyl naphthalene	ng/g	20	201				ISQG	ISQG
dibenzo(a,h)anthracene	ng/g	6.2	135		ISQG'		-	ISQG'
benzo(a)anthracene/chrysene	ng/g	32	385			ISQG		ISQG
phenanthrene	ng/g	42	515					ISQG

^(a) Guidelines taken from CCME (1999).

(b) ISQG = interim freshwater sediment quality guidelines.

(c) PEL = probable effect levels.

'Although substance concentrations were below detection limits, the analytical detection limit exceeded the relevant surface water guideline.

- = no data.

Sediment PAH levels in 1999 were generally consistent with the results of previous sampling events, with several exceptions. C4 substituted phenanthracene/anthracene and methyl naphthalene were present at higher concentrations in 1999 than in previous years (Table 6.20). Although benzo(a)anthracene/chrysene levels in 1997 exceeded the Canadian Sediment Quality Guideline, no parameter concentrations were found to exceed guidelines in 1999 (Table 6.21).

Upper Muskeg River

Sediment chemistry in the upper Muskeg River is limited to a single PAH analysis. Generally, sediment PAH levels in the upper Muskeg River were similar to concentrations observed at the river mouth (Table 6.20). Exceptions included C2 substituted naphthalene, methyl benzo(a)pyrene, methyl dibenzothiophene and methyl fluorene, all of which were present at higher concentrations in the upper Muskeg River than at the river mouth. Concentrations of methyl naphthalene in the upper Muskeg River were slightly higher than the corresponding Canadian Sediment Quality Guideline (i.e., 21 ng/g versus 20 ng/g - Table 6.21). This was the only compound present at concentrations in excess of guideline levels.

6.1.3 Summary

Water quality in each of the Athabasca River tributaries sampled in 1999 was generally consistent with historical trends. As in previous years, naphthenic acids were detected in the Muskeg River and the Alsands Drain. Naphthenic acids were also detected, for the first time, in McLean Creek and Muskeg Creek. Chronic aquatic toxicity was again observed in the upper Muskeg River in 1999. Water samples from the other tributaries were non-toxic, as assessed by Microtox[®]. TDS and total aluminum concentrations were generally higher at more sample locations than in previous years. High sulphate levels were also observed in the lower Muskeg River in 1999.

Sediment quality in the Muskeg River in 1999 was generally consistent with historical data. PAH concentrations in the upper Muskeg River were similar to those observed at the river mouth, with the exception of C2 substituted naphthalene, methyl benzo(a)pyrene, methyl dibenzothiophene and methyl fluorene; these substances were present at higher concentrations in the upper Muskeg River. Sediments from the mouth of McLean Creek were found to be chronically toxic to several species of invertebrates. They generally contained higher total metal and PAH concentrations than sediments from the Muskeg River. Sediment PAH concentrations in McLean Creek were also higher than PAH levels observed in sediments from the Athabasca River Delta.

6.2 FISH POPULATIONS

6.2.1 Sentinel Fish Species Monitoring

Nine fish species were captured during collections of slimy sculpin from the Muskeg and Steepbank rivers (Table 6.22). Most were small-bodied fish species, although juvenile individuals of longnose sucker, burbot and Arctic grayling were also captured. Slimy sculpin was the most widely distributed small-bodied species. Relative abundance of slimy sculpin, as estimated by catch-per-unit-effort (CPUE), was similar among exposure sites, but was more than double at the reference site (Figure 6.10). The habitat at the Steepbank River reference site (SR-R) is dominated by moderately flowing riffles and runs with boulder/cobble substrate. These conditions are optimal for sculpin, although providing limited habitat diversity for other fish species (Table 6.22, Figure 6.10). The CPUE for all other species combined (i.e., incidental species) was more variable among sites, although CPUE estimates for species other than sculpin may be biased. The capture method and habitat type were specifically selected to collect slimy sculpin. The abundance of female, male and immature slimy sculpin collected at each site is presented in Table 6.23.

Water quality parameters measured in the field were similar at both fish collection sites on the Muskeg River (Table 6.24). Sites on the Steepbank River were generally cooler and had lower conductivity and higher pH relative to sites on the Muskeg River. The reference site on the Steepbank River was slightly cooler than the lower site at the Steepbank River mine (SR-MN), and had higher concentrations of dissolved oxygen. These conditions probably reflect the increased influence of headwater temperatures, as well as increased riffle habitat and turbulent flow. Dissolved oxygen at site SR-MN was lower relative to other sites, but was above the CCME guideline of 6.5 mg/L for cold water biota (CCME 1999). It was, however, just below the guideline of 9.5 mg/L stipulated to protect early life stages of coldwater biota (CCME 1999).

Table 6.22Total Number of Each Fish Species Caught and Observed at Each
Sampling Site, Muskeg River and Steepbank River, Fall 1999

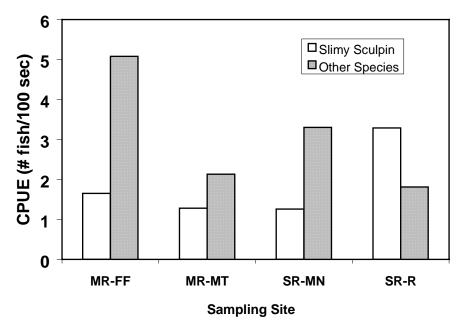
	Muskeg River		Steepba		
Fish Species	MR-FF	MR-MT	SR-MN	SR-R	Total
slimy sculpin	54	65	118	118	435
spoonhead sculpin	1	10	8	0	19
pearl dace	27	46	70	17	160
longnose dace	9	8	105	33	155
trout-perch	21	14	55	9	99
lake chub	~100 ^(a)	0	42	0	~142
longnose sucker ^(b)	7	26	25	6	64
burbot ^(b)	0	4	3	0	7
Arctic grayling ^(b)	1	0	0	0	1
Total	~220	173	426	183	1,002
electrofishing effort (sec) (c)	3,267	5,071	9,343	3,584	21,265

^(a) Estimate based on visual observation rather than actual capture.

^(b) Juveniles and young-of-the-year.

^(c) Total electrofishing effort is also presented.

MR-FF = Muskeg River fish fence; MR-MT = Muskeg River mouth; SR-MN = Steepbank River mine; SR-4 = Steepbank River reference.


Table 6.23Total Number of Female, Male and Immature Slimy Sculpin (Cottus
cognatus) for Processing, Muskeg and Steepbank Rivers, Fall 1999

	Muske	eg River	Steepbank River		
Sex	MR-FF	MR-MT	SR-MN	SR-R	
female	22	41	34	43	
male	14	19	15	37	
immature (a)	1	5	4	0	
Total	37	65	53	80	

^(a) Sacrificed due to unknown maturity.

MR-FF = Muskeg River fish fence; MR-MT = Muskeg River mouth; SR-MN = Steepbank River mine; SR-4 = Steepbank River reference.

Figure 6.10 Catch-Per-Unit-Effort of Slimy Sculpin and Other Species, Muskeg River and Steepbank River, Fall 1999

MR-FF = Muskeg River fish fence; MR-MT = Muskeg River mouth; SR-MN – Steepbank River mine; SR-R = Steepbank River reference.

Table 6.24Mean Values (± SD) of Field Water Parameters Measured at Each Fish
Collection Site, Muskeg and Steepbank Rivers, Fall 1999

	Muske	g River	Steepbank River		
Field Parameter	MR-FF	MR-MT	SR-MN	SR-R	
water temperature (°C)	11.6 ± 0.5	11.5 ± 0.7	9.2 ± 0.8	7.8	
dissolved oxygen (mg/L)	9.78 ± 0.97	10.57 ± 0.08	8.44 ± 0.18	12.88	
conductivity (µS/cm)	588 ± 5	579 ± 2	439 ± 1	442	
рН	8.08 ± 0.13	8.24 ± 0.23	8.62 ± 0.14	8.47	

Means were calculated from measurements taken each time a site was sampled for sentinel fish (i.e., MR-FF, MR-MT and SR-MN, *n*=2; SR-R, *n*=1).

MR-FF = Muskeg River fish fence; MR-MT = Muskeg River mouth; SR-MN = Steepbank River mine; SR-4 = Steepbank River reference.

6.2.1.1 Fish Measurements

Based on external/internal pathology exams of slimy sculpin, the presence of abnormalities ranged from 13.5-78.5% per site (Table 6.25). The presence of small, white parasitic cysts within the body cavity was the most prevalent abnormality observed, particularly for sculpin from the mouth of the Muskeg River (site MR-MT). Severity of infestation typically ranged from a few cysts (49% of infected fishes) to moderate numbers of cysts (44%), with only a few fish that were heavily infested (7%). Although difficult to definitively confirm, the internal cyst is likely a life stage of a trematode fluke (Order: Stregeata) (Al Shostak, University of Alberta, pers. comm.) that uses snails and fish as intermediate hosts prior to parasitizing fish eating birds (final host). External cysts were similar in appearance to the internal cysts and were found on the lips, gills and around the eye. It is uncertain what effect the parasitism has on the health of infected sculpin, but it potentially could contribute to their overall stress level. The reason for the infestation is unknown and the occurrence of other abnormalities was low.

	Muske	eg River	Steepbank River		
Abnormality	MR-FF	Site MR-MT	Site SR-MN	Site SR-R	
parasitic cysts ^(a) - internal	5	49	8	9	
- external	0	7	0	2	
unknown cyst (testes)	0	1	0	0	
tapeworm (Cestoda)	0	0	1	1	
papiloma (mouth)	0	1	1	0	
external discolouration	0	0	0	1	
Total No. fish evaluated	37	65	53	80	
% affected ^(b)	13.5	78.5	18.9	13.8	

Table 6.25	Number of Slimy Sculpin with Specific External/Internal
	Abnormalities, Muskeg and Steepbank Rivers, Fall 1999

^(a) Trematode fluke (Order: Stregeata).

^(b) An individual fish may exhibit more than one type of abnormality.

MR-FF = Muskeg River fish fence; MR-MT = Muskeg River mouth; SR-MN = Steepbank River mine; SR-4 = Steepbank River reference.

Muskeg River

Due to the absence of appropriate reference sites on the Muskeg River, the performance of sculpin downstream of current (and future) mining developments on the Muskeg River were compared to reference sculpin from the Steepbank River. The test site on the Muskeg River used for these comparisons was site MR-MT. A limited number of sculpin were also collected from the fish fence site on the Muskeg River (site MR-FF), but were not used in statistical comparisons because:

- At site MR-FF, sculpin were collected from small, discrete riffle habitats that were widely separated by long portions of slow runs and pools resulting from beaver dams. Conversely, habitat at site MR-MT was more continuous/homogenous and more similar to reference conditions.
- Individuals collected from site MR-FF were generally small/young and few larger mature sculpin were captured.
- Greater numbers of adult sculpin were collected from site MR-MT, providing better estimates of fish parameters, and increasing statistical power of comparisons with reference fish.

Due to the distance between sites MR-FF and MR-MT (approx. 10 km), and differences in habitat conditions, it was not considered appropriate to pool data from these two sites.

With the obvious exception of one year old individuals, the age distribution of adult sculpin (males and females combined) from site MR-MT is similar to the reference site (Figure 6.11). The relative scarcity of one year old sculpin at site MR-MT is noteworthy and contributed to the observed difference in mean age of male sculpin (Table 6.26). There was no difference in female mean age, in part due to the higher numbers of one and two year old females, relative to males.

Both male and female sculpin from site MR-MT weighed less and were thinner (i.e., condition factors were lower) when compared to reference sculpin (Table 6.26).

Mean ovary weight was statistically smaller at site MR-MT (Figure 6.12a), although there was no difference in fecundity between sites (Table 6.26). Mean testis weight was also similar between sites (Figure 6.12b). Female liver weights were heavier at site MR-MT, but male liver weights were smaller (Figure 6.13).

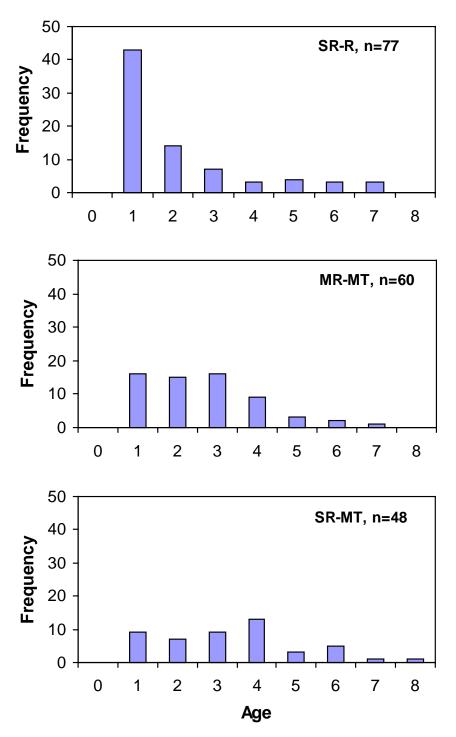
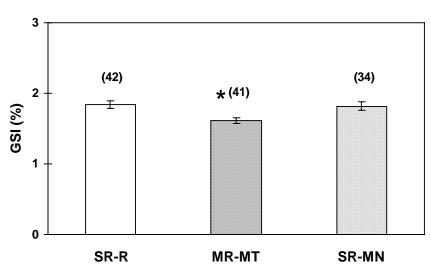

		Reference Site	Exposu	re Sites
Sex	Parameter	SR-R	MR-MT	SR-MN
	total length (cm)	7.5 ± 0.2 (43)	7.3 ± 0.1 (41)	8.2 ± 0.1 (34) *
	body weight (g)	4.48 ± 0.32 (43)	3.55 ± 0.18 (41) *	5.36 ± 0.30 (34) *
female	K ^(a)	0.87 ± 0.01 (42)	0.78 ± 0.01 (39) *	0.83 ± 0.02 (33) *
	age (y)	2.3 ± 0.3 (42)	2.5 ± 0.2 (41)	3.3 ± 0.3 (34) *
	fecundity (# eggs/g) ^(b)	63 ± 3 (29)	55 ± 3 (30)	59 ± 4 (30)
	total length (cm)	7.8 ± 0.1 (36)	7.7 ± 0.1 (19)	8.5 ± 0.1 (14) *
molo	body weight (g)	4.85 ± 0.21 (37)	4.21 ± 0.25 (19) *	6.32 ± 0.58 (15) *
male	К	0.88 ± 0.01 (36)	0.78 ± 0.02 (19) *	0.86 ± 0.01 (15)
	age (y)	1.9 ± 0.2 (35)	2.6 ± 0.3 (19) *	3.6 ± 0.4 (14) *

Table 6.26Mean ± SE (n) of Body Size, Age and Fecundity of Slimy Sculpin,
Muskeg and Steepbank Rivers, Fall 1999

Note: Site differences in condition factor (K) and fecundity were tested using analysis of covariance. The remaining variables were examined using analysis of variance. Outliers identified during these analyses were omitted when calculating the above mean values. Within a row, a difference (p<0.05) between reference and each exposed site is identified by an asterisk.

^(a) $K = 100^{\circ}$ (carcass weight/total length³).


^(b) Fecundity standardized by fish size (i.e., # eggs/carcass weight).

MR-FF = Muskeg River fish fence; MR-MT = Muskeg River mouth; SR-MN = Steepbank River mine; SR-4 = Steepbank River reference.

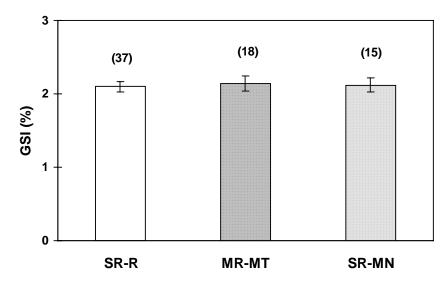
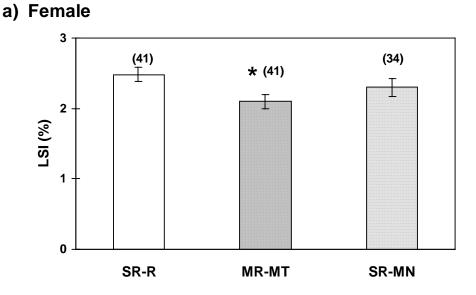
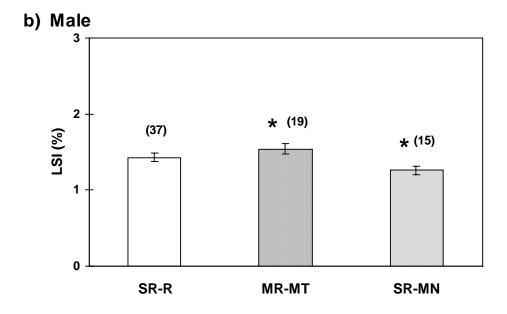

Golder Associates

Figure 6.12 Gonadosomatic Indices (GSI) of a) Female and b) Male Slimy Sculpin, Muskeg and Steepbank Rivers, Fall 1999^(a)

a) Female




Sampling Sites

 $^{(a)}$ Values represent mean \pm S.E. (sample size in parentheses). A difference (p <0.05) between reference and exposure sites is identified with an asterisk.

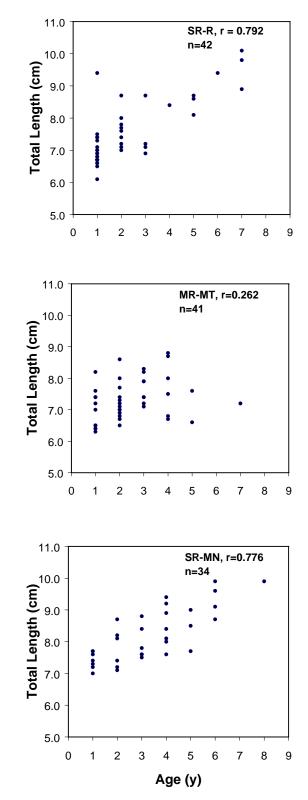
GSI = (gonad wt / carcass wt) * 100.

Figure 6.13 Liver Somatic Index (LSI) of a) Female and b) Male Slimy Sculpin, Muskeg and Steepbank Rivers, Fall 1999^(a)

Sampling Sites

^(a) Values represent mean \pm S.E. (sample size in parentheses). A difference (p <0.05) between reference and exposure sites is identified with an asterisk.

LSI = (liver wt / carcass wt) * 100.


Golder Associates

Statistical comparisons of growth, as estimated by size-at-age, between site MR-MT and site SR-R were not possible. For female sculpin from the reference site, there was a definite positive relationship between total length and age; however, the relationship at site MR-MT was variable and poor (Figure 6.14). For male sculpin, size-at-age relationships at both sites were poor (Figure 6.15). The "strength" of the Pearson correlation coefficient at site SR-R was driven predominantly by one large male fish (length=13.6 cm, age=6 y). If this fish was removed, the coefficient changed from r=0.53 to r=0.25. The reason for the variability in size-at-age is unknown. It was evident while ageing sculpin that otoliths from some fish showed definite and clear annuli; whereas otoliths from other fish were difficult to read due to the presence of incomplete or false annuli (J. Tost, Northshore Environmental, pers. comm). However, strong size-at-age relationships for female sculpin from site SR-R (and site SR-MN, see section on Steepbank River) suggest that the ageing procedure was adequate, but the variability in otolith growth made it difficult to estimate age. For sculpin from site MR-MT, it is possible that some of the variability in growth is related to the high level of parasitism observed at this site. However, this does not explain the poor size-at-age relationship for males at site SR-R. The limited sample size of males at site MR-MT may also have contributed to the weak relationship at this site.

Table 6.27 provides a summary of the response of slimy sculpin collected from site MR-MT relative to reference fish. The percent difference was included to provide a better understanding of the magnitude of difference in individual fish characteristics. With the exception of male age, the magnitude of differences between sculpin from the Muskeg River and the reference site are not dramatic [i.e., <20%, Suter et al. (1995); Environment Canada (1997)]. In general, there is a tendency towards less energy expenditure (e.g., reduced body weight and gonad size) and storage (reduced condition, liver size), and increased mean age for sculpin from site MR-MT. This is often a response to reduced food availability.

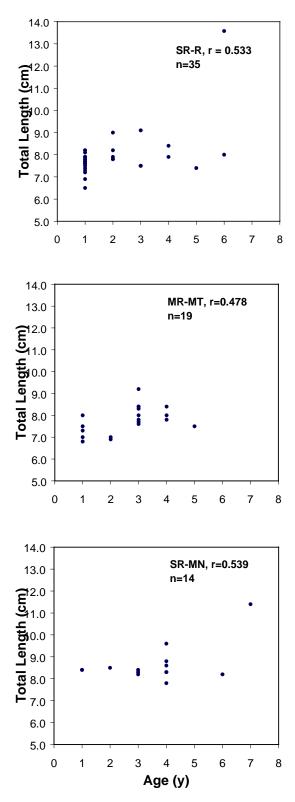

Food may be less available for several reasons, such as an increase in competition, a decrease in the availability of habitat and/or a change in food base, or reduced ability to forage (Gibbons and Munkittrick 1994). No specific information was collected to compare food/habitat resource between these sites. In 1998, the density of benthic algae and invertebrate communities in the lower Muskeg River was moderately higher relative to the lower Steepbank River (Golder 1999a). However, site SR-R is located approximately 16 km from the confluence with the Athabasca River and may not be similar in productivity to the lower Steepbank River, particularly with regards to conditions specific to slimy sculpin. In addition, water levels at site MR-MT were low because of below-average annual precipitation in the area (see Section 2.3) and the presence of an upstream beaver dam. The reduction in flow may have altered the amount and quality of available habitat for fishes resident to that portion of the river. Finally, it is also possible that the high level of parasitism at site MR-MT may play a role in the metabolism of slimy sculpin.

Figure 6.14 Plot of Total Length vs. Age for Female Slimy Sculpin, Muskeg and Steepbank Rivers, Fall 1999

Golder Associates

Figure 6.15 Plot of Total Length vs. Age for Male Slimy Sculpin, Muskeg and Steepbank Rivers, Fall 1999

Golder Associates

Table 6.27Summary of the Response of Slimy Sculpin from Site MR-MT Relative
to Site SR-R, Muskeg and Steepbank Rivers, Fall 1999

		emale	ſ	/lale
Parameter	Response ^(a)	% Difference ^(b)	Response	% Difference
total length	0	ns	0	ns
body weight	-	-17.68	-	-13.38
condition	-	-10.02	-	-11.50
age	0	ns	+	+51.95
gonad weight	-	-9.46	0	ns
fecundity	0	ns	na	na
liver weight	-	-14.98	+	+15.02

^(a) + signifies an increase relative to reference data, - signifies a decrease, O signifies no change.

^(b) Percent difference is given where differences were significantly different. % Difference is for "exposed" relative to the reference site calculated using ANOVA/ANCOVA adjusted least squared means.

na – not available, ns – not significantly different.

MR-MT = Muskeg River at the mouth; SR-R = Steepbank River reference site.

The inconsistency between male and female liver size is difficult to explain. Both liver size and condition are descriptors of the energy storage in fish. As such, they tend to covary in response to increasing or decreasing food/habitat availability (as observed with female sculpin). The discrepancy in males may suggest some level of metabolic redistribution resulting in inconsistencies in energy allocation. Changes in liver size have also been associated with exposure to foreign chemical compounds (Sloof et al. 1983; Hodson et al. 1992; McMaster et al. 1991); however, one would expect a similar response in female sculpin.

The observed response of slimy sculpin from site MR-MT needs to be confirmed over time to identify whether it persists or it reflects something particular to 1999 (e.g., water levels at site MR-MT, parasitism). The MFO data will also provide information that will add to our understanding of exposure-response relationships between sites.

Steepbank River

There were substantially fewer one year old sculpin collected from site SR-MN relative to the reference site (Figure 6.11). This was also observed at site MR-MT. As well, there were more three and four year old sculpin at site SR-MN than were found at site SR-R. Not surprisingly, mean ages of male and female slimy sculpin from site SR-MN were older than reference sculpin (Table 6.26).

Sculpin from site SR-MN were longer and heavier than reference fish (Table 6.26). There was no significant difference in male condition; however, female sculpin were statistically thinner at site SR-MN. The actual difference in female condition was only 5.5%, but substantial sample sizes and low variability allowed the detection of a small difference in condition (i.e., high statistical power).

Ovary and testis weights were not significantly different between site SR-MN and SR-R (Figure 6.12). Fecundity was also found to be similar between sites (Table 6.26). Liver weights were similar among female sculpin (Figure 6.13a); however, males at site SR-MN had smaller livers compared to reference sculpin (Figure 6.13b).

For female sculpin, total length was positively correlated with age at both sites (Figure 6.14). The slopes of regression lines for each site were not significantly different (p=0.017), but there was a small statistical difference (3.3%) between the intercepts of each line (p=0.049). Unfortunately, size-at-age relationships for male sculpin at both sites were variable and poorly correlated (Figure 6.15). The limited sample size of males at site SR-MN may have contributed to the weak relationship at this site; however, the sample size was much higher at the reference site with similar results. The reason for the poor size-at-age relationships in male slimy sculpin is unknown.

Table 6.28 summarizes the response of slimy sculpin from site SR-MN relative to sculpin from the reference site (SR-R). In general, fish collected at site SR-MN were older and larger (length and weight). However, there was no concomitant increase in reproductive effort (gonad size, fecundity) or energy stores (condition, liver size) that would suggest a response to increased food/habitat availability. In fact, female condition (small change) and male liver size were reduced relative to reference sculpin. An increase in mean age can result from an increase in juvenile and/or early life stage mortality or decreased recruitment (Gibbons and Munkittrick 1994). Decreased recruitment seems an unlikely mechanism because there is little evidence of reduced reproductive effort (e.g., gonad size, fecundity). However, there are other factors that could influence recruitment such as the quality of eggs produced, number of successful spawning individuals, availability and quality of spawning habitat and survival/growth of juveniles (Gibbons et al. 1998). The hypothesis of increased juvenile/early life stage mortality is consistent with the lower number of one year old individuals found at site SR-MN relative to site SR-R. An additional possibility is that older and larger individuals were collected at site SR-MN, perhaps as a function of habitat differences that favour these individuals (i.e., size partitioning by habitat type/dominance). As with the Muskeg River, sculpin from site SR-MT need be re-evaluated in the future to confirm the persistence and/or accuracy of the response before definitive conclusions can be made. MFO

Golder Associates

data will also facilitate our understanding of the observed exposure-response relationship.

	Fe	emale	М	ale
Parameter	Response ^(a)	% Difference ^(b)	Response	% Difference
total length	+	+9.01	+	+8.43
body weight	+	+23.98	+	+28.43
condition	-	-5.53	0	0
age	+	+54.16	+	+106.52
size-at-age	+	+3.34	na	na
gonad weight	0	ns	0	ns
fecundity	0	ns	na	na

Table 6.28Summary of the Response of Slimy Sculpin from Site SR-MN Relative
to Site SR-R, Steepbank River, Fall 1999

^(a) + signifies an increase relative to reference data, - signifies a decrease, O signifies no change.

ns

-16.32

^(b) Percent difference is given where differences were significantly different. % Difference is for "exposed" relative to the reference site calculated using ANOVA/ANCOVA adjusted least squared means.

na = not available, ns = not significantly different.

0

Reference Site Suitability

liver weight

The response of slimy sculpin at sites MR-MT and SR-MN were defined relative to slimy sculpin collected at the reference site SR-R. The assumption of the study design is that sculpin from site SR-R represent the natural or baseline condition for slimy sculpin. Despite efforts to select reference and exposure sites that were as similar as possible (habitat type, chemistry, flow, substrate, etc), it is difficult to meet this objective, particularly when sites are located on different river systems (e.g., MR-MT vs. SR-R). Based on CPUE data and habitat conditions, there is little doubt that site SR-R represents prime habitat for slimy sculpin. However, it is less obvious whether sites MR-MT and SR-MN provide the same level of habitat quality/quantity. As such, observed differences in whole-organism characteristics may be a function of habitat and/or anthropogenic influences. This is particularly true considering mining development in the vicinity of the Muskeg River is still limited, and there is no known direct influence of mining on the Steepbank River. As monitoring continues over time and mining development increases, the potential change in the relative response of slimy sculpin will be important to identify impacts on aquatic systems. Future monitoring should include more detailed analyses of habitat characteristics at each site in an effort to improve our understanding of habitat-response relationships.

6-45

Ideally, several reference sites should be sampled to ensure that the full range of natural variability in fish characteristics is more accurately defined. It is for this reason that effort was made to identify an additional reference site on the Ells River, although the effort was not successful. However, within the Oil Sands Region candidate reference sites of comparable habitat and fish communities to "exposed" sites are limited and, if available, often difficult to access. To ensure the success of the sentinel monitoring program for the Muskeg and Steepbank rivers, more effort is needed to identify other reference sites located within the Oil Sands Region.

6.2.1.2 Sample Size Considerations

The number of fish needed to detect a 20, 30 and 50% difference in each fish parameter for each reference-exposure site comparison is summarized in Table 6.29. With the exception of mean age, sufficient sample sizes of female and male slimy sculpin were collected from each site to detect at least a 30% difference, and in some cases a 20% difference, between sites. As well, sample sizes for slimy sculpin were adequate to meet the pulp and paper environmental effects monitoring (EEM) criterion of detecting a difference in gonad weight of $\pm 25\%$ (Environment Canada 1997). In the future, greater numbers of male slimy sculpin need to be collected to ensure that sample sizes are more than adequate to meet minimum requirements, particularly for parameters such as body weight, liver weight and gonad size.

Variability in age of adult fish is common and for slimy sculpin it was not possible to detect a difference in mean age less than approximately 50%. However, with the exception of the comparison of female sculpin from site MR-MT vs. SR-R, a difference of greater than 50% in age was observed for all other site comparisons (Table 6.27, Table 6.28). As with trout-perch from the Athabasca River (Section 5.2.2), improved techniques for ageing slimy sculpin may help to reduce some of the uncertainty and observed variability in age. Estimates of total body weight, fecundity and liver weight were the next most variable parameters measured and required greater sample sizes relative to other parameters.

Excluding age, the final results indicated that the minimum number of fish needed to be collected from each site were approximately 62 females and 29 males to detect a 20% difference between sites; 31 females and 14 males to detect a 30% difference; and 13 females and 6 males to detect a 50% difference. In general, sample size requirements for comparisons between sites SR-R and SR-MN were higher than comparisons between sites SR-R and MR-MT. Because both comparisons involve a common reference site, the difference in sample size requirements reflects the difference in variability between sites MR-MT and SR-MN.

		Site	SR-R vs MR-	мт	Site SR-R vs SR-MN				
Parameter	Sex	ES=20%	ES=30%	ES=50%	ES=20%	ES=30%	ES=50%		
total length	female	7	4	2	7	4	2		
	male	3	2	1	3	2	1		
body weight	female	59	29	13	62	31	13		
	male	28	14	6	29	14	7		
condition	female	4	2	2	3	2	1		
	male	3	2	1	2	2	1		
age	female	186	90	38	209	101	43		
	male	167	81	35	171	83	35		
size-at-age	female	4	2	2	3	2	1		
	male	3	2	1	3	2	1		
gonad weight	female	12	6	3	14	7	4		
	male	20	10	5	23	12	5		
fecundity	female	46	23	10	49	24	10		
liver weight	female	41	20	9	45	22	10		
	male	24	12	6	25	12	6		

Table 6.29Number of Slimy Sculpin Per Site Needed to Detect ParameterDifferences of 20, 30 and 50% (i.e., effect size) Between Sites

^(a) Calculations were done using \log_{10} transformed data and setting power=0.80 and α =0.05.

(ES) = effect size or δ .

6.2.2 Summary

Based on abundance and distribution among study sites on the Muskeg River and Steepbank River, slimy sculpin was selected as the sentinel species. Sculpin collected from a reference site on the upper Steepbank River was used to evaluate the performance of sculpin collected from: 1) a site on the Muskeg River downstream of mining development; and 2) a site on the lower portion of the Steepbank River adjacent to mining activity.

In general, sculpin from the Muskeg River were older and had reduced body weight, condition, gonad weight and liver weight suggesting a response to lower food availability relative to the reference site. Low water levels in this section of the river may have affected availability and quality of instream habitat. As well, it is unknown what effect, if any, the observed parasitism has had on the metabolism of sculpin from the Muskeg River. Sculpin from the lower Steepbank River were older and larger (length, weight) than reference fish, but few other differences in whole-organism characteristics were observed. The reason for the increase in mean age is unknown, but can result from an increase in juvenile/early life stage mortality or decreased recruitment. The observed responses of slimy sculpin from the Muskeg River and lower Steepbank River need to be confirmed over time before definitive conclusions can be made. Future monitoring should also include more detailed analyses of habitat characteristics at each site. As well, additional reference sites are needed to ensure the full range of natural variability in fish characteristics within the Oil Sands Region is accurately defined. Power analyses confirmed that sample sizes were adequate to detect site differences in most parameters; however, more effort is needed to collect higher numbers of males. In addition, improved techniques for ageing slimy sculpin would increase our confidence in age estimates.

7 WETLANDS - RESULTS AND DISCUSSIONS

7.1 WATER QUALITY

7.1.1 Shipyard Lake

Water samples were collected from Shipyard Lake in the spring, summer and fall of 1999. Water quality in the lake was generally consistent across the three seasons (Tables 7.1 and 7.2). Exceptions included:

- higher total aluminum concentrations in summer;
- higher total chromium concentrations in fall; and
- lower total zinc, dissolved manganese and dissolved mercury concentrations in fall.

In comparison to earlier sampling events in 1995 (spring and summer) and 1998 (summer only), Shipyard Lake waters were more basic and contained lower total suspended solids (TSS), iron, manganese, total phosphorus and dissolved aluminum concentrations in 1999 (Tables 7.1 and 7.2). Total nickel and chromium levels were lower in the spring and summer of 1999 than in 1995.

As in other years, the 1999 Shipyard Lake samples contained non-detectable levels of naphthenic acids and was non-toxic to bacteria (Table 7.1). Nutrient levels indicate that the lake is mesotrophic (Wetzel 1983). Total phenolic concentrations in spring and fall of 1999 exceeded chronic aquatic guidelines. Similarly, total iron levels in the spring of 1999 exceeded human health and chronic aquatic guidelines (Table 7.3). Guidelines for total iron concentrations were also exceeded in 1995.

Detection limits reported in 1999 for total mercury and total silver exceed guideline levels, so these elements were not evaluated with respect to water quality guidelines (Table 7.3). However, dissolved mercury concentrations were higher than human health guidelines in the spring and summer of 1999; dissolved mercury levels in the summer of 1999 were also higher than the chronic aquatic guideline.

		Sp	ring	Summer			Fall
Parameter	Units	1999	1995 ^(a)	1999	1998 ^(b)	1995 ^(a)	1999
Field Measured							
pН		8.0	6.9	8.9	7.5	7.4	8.7
specific conductance	μS/cm	314	241	264	329	274	333
temperature	°C	10.9	-	22.8	-	-	2.2
dissolved oxygen	mg/L	7.8	-	14.0	-	-	8.2
Conventional Parameters and M	lajor lon	S					
chloride	mg/L	9.0	5.8	8.0	8.0	4.8	11
dissolved organic carbon	mg/L	16	-	16	16	-	17
sulphate	mg/L	5	4	4	3	2	6
total alkalinity	mg/L	152	109	134	161	135	165
total dissolved solids	mg/L	220	-	220	386	147	240
total organic carbon	mg/L	18	18	18	22	24	19
total suspended solids	mg/L	< 3	155	4	11	180	5
Nutrients and Chlorophyll a							
nitrate + nitrite	mg/L	< 0.1	0.01	0.1	< 0.05	0.02	< 0.1
nitrogen - ammonia	mg/L	< 0.05	< 0.01	< 0.05	0.06	0.09	< 0.05
nitrogen - total	mg/L	0.9	0.8	0.9	0.9	0.6	0.8
phosphorus, total	μg/L	19	31	12	29	34	17
chlorophyll a	μg/L	-*	-	3	6	-	_*
Biochemical oxygen demand				•			
biochemical oxygen demand	mg/L	3	-	3	2	-	< 2
Toxicity							
Microtox IC50 @ 15 min	%	> 91	-	> 91	>91	> 100	> 91
Microtox IC25 @ 15 min	%	> 91	-	> 91	>91	> 100	> 91
Organics							
naphthenic acids	mg/L	< 1	-	< 1	< 1	< 1	< 1
total phenolics	μg/L	7	-	2	3	-	6

Table 7.1 Water Quality in Shipyard Lake

^(a) Based on information from Golder (1996a).

^(b) Based on information from Golder (1999a).

* Data discarded due to issues with data quality.

Table 7.2 Metal Levels in Shipyard Lake

		Sp	ring	Summer			Fall
Parameter	Units	1999	1995 ^(a)	1999	1998 ^(b)	1995 ^(a)	1999
Total Metals	1				1		
aluminum (Al)	μg/L	30	20	70	30	50	30
antimony (Sb)	μg/L	< 0.8	-	< 0.8	< 0.8	0.2	< 0.8
arsenic (As)	μg/L	< 1	0.2	< 1	< 1	< 1	< 1
barium (Ba)	μg/L	34	20	22	35	30	27
cadmium (Cd)	μg/L	< 0.2	< 0.2	< 0.2	< 0.2	< 3	< 0.2
chromium (Cr)	μg/L	< 0.8	7.0	< 0.8	< 0.8	9.0	1.5
copper (Cu)	μg/L	< 1	1	1	< 1	-	< 1
iron (Fe)	μg/L	250	1150	220	2090	2650	270
lead (Pb)	μg/L	0.4	1.0	0.1	0.3	< 20	< 0.1
manganese (Mn)	μg/L	24	46	< 127	98	180	15
mercury (Hg)	μg/L	< 0.2	< 50	< 0.2	< 0.2	< 50	< 0.2
molybdenum (Mo)	μg/L	0.4	< 3	0.1	< 0.1	< 3	0.2
nickel (Ni)	μg/L	1	11	1	1	10	2
selenium (Se)	μg/L	< 0.8	< 0.2	< 0.8	< 0.8	< 1	< 0.8
silver (Ag)	μg/L	< 0.4	1.1	< 0.4	< 0.4	< 2	< 0.4
zinc (Zn)	μg/L	7	17	12	< 4	13	< 4
Dissolved metals							
aluminum (Al)	μg/L	10	-	10	60	-	< 10
antimony (Sb)	μg/L	< 0.8	-	< 0.8	< 0.8	-	< 0.8
arsenic (As)	μg/L	< 0.4	-	1.3	0.5	-	< 0.4
barium (Ba)	μg/L	31	-	17	33	-	28
cadmium (Cd)	μg/L	< 0.1	-	< 0.1	0.1	-	< 0.1
chromium (Cr)	μg/L	0.4	-	< 0.4	< 0.4	-	0.8
copper (Cu)	μg/L	0.9	-	1.6	0.6	-	0.9
iron (Fe)	μg/L	140	-	130	1480	-	220
lead (Pb)	μg/L	0.2	-	0.2	0.1	-	< 0.1
manganese (Mn)	μg/L	15	-	1	102	-	3
mercury (Hg)	μg/L	0.1	-	0.2	< 0.1	-	0.03
molybdenum (Mo)	μg/L	0.4	-	< 0.9	< 0.1	-	0.2
nickel (Ni)	μ g/L	0.7	-	0.5	0.3	-	1.8
selenium (Se)	μg/L	< 0.4	-	< 0.4	< 0.4	-	< 0.4
silver (Ag)	μ g/L	< 0.2	-	< 0.2	< 0.2	-	< 0.2
zinc (Zn)	μg/L	8	-	< 2	< 2	-	3

^(a) Based on information from Golder (1996a).

^(b) Based on information from Golder (1999a).

Table 7.3	Summary of Parameters Found to Exceed Surface Water Quality
	Guidelines in Shipyard Lake

		Guidelines for the Protection of					Shipyard Lake			
		Aquat	Aquatic life ^(a)		Sp	ring	Summer			Fall
Parameter	Units	Acute	Chronic	Health ^(b)	1999	1995	1999	1998	1995	1999
Total Phenolics	Total Phenolics									
total phenolics	μg/L	-	5	-	С	-			-	С
Total Metals										
iron (Fe)	μg/L	-	300	300	СН	СН		СН	СН	
lead (Pb)	μg/L	*	*	-					C`	
manganese (Mn)	μg/L	-	-	50			H,	Н	Н	
mercury (Hg) ^(c)	μg/L	1.4	0.1	0.05	СН	A C H`	СН	СН	A C H`	C H,
silver (Ag)	μg/L	*	0.1	-	C`	С	C`	C`	C`	C`

^(a) Guidelines taken from AENV (1999).

^(b) Guidelines taken from U.S. EPA (1999).

^(c) Using U.S. EPA and CCME guidelines, respectively, because Alberta mercury guidelines have not been finalized.

* Guidelines are hardness dependant; calculated at each sample site using the U.S. EPA method described in AENV (1999).

C = chronic aquatic guideline exceeded; H = human health guideline exceeded.

- No guideline / no data.

` Although substance concentrations were below detection limits, the analytical detection limit exceeded the relevant surface water guideline.

Blank cells = no guideline exceeded.

7.2 SEDIMENT QUALITY

7.2.1 Kearl Lake

Environment Canada collected one sediment sample from Kearl Lake in 1998. The sample generally contained higher PAH concentrations than sediments collected from the Muskeg River in 1998 and 1999 (Table 7.4). Concentrations of methyl naphthalene and dibenzo(a,h)anthracene exceeded Canadian Sediment Quality Guidelines.

Table 7.4Concentration of Polycyclic Aromatic Hydrocarbons in Sediments
from Kearl Lake and the Muskeg River

			Kearl					
			Mouth Upper					
Parameter	Units	1999	1998 ^(a)	1997	1998 ^(b)	(1998) ^(b)		
naphthalene	ng/g	14	*18	< 3	6	26		
methyl naphthalenes	ng/g	20	15	< 3	21	57		
C2 substituted naphthalenes	ng/g	22	18	< 20	97	108		
C3 substituted naphthalenes	ng/g	23	16	40	27	17		
C4 substituted naphthalenes	ng/g	4.5	< 2.2	60	18	19		
acenaphthene	ng/g	< 2.6	< 4	< 3	0.4	3.1		
methyl acenaphthene	ng/g	2.8	< 1.1	< 20	-	-		
acenaphthylene	ng/g	< 3.5	< 1	< 3	0.4	1.6		
anthracene	ng/g	< 2	< 3.1	< 3	0.4	5.2		
dibenzo(a,h)anthracene	ng/g	< 3.7	< 21	< 3	nd	10		
benzo(a)anthracene/chrysene	ng/g	16.5	*16	35	12	21		
methyl benzo(a)anthracene/chrysene	ng/g	17	< 2.5	70	5	15		
C2 substituted	ng/g	9.2	< 1.7	130	5.2	40		
benzo(a)anthracene/chrysene								
benzo(a)pyrene	ng/g	< 5.1	< 10	13	nd	13		
methyl b(b&k)f/methyl b(a)p	ng/g	< 12	< 8.6	90	164	27		
C2 substituted b(b& k)f/b(a)p	ng/g	< 9.2	< 5.7	100	-	-		
benzo(b&k)fluoranthene	ng/g	11	< 12	14	5.6	32		
benzo(g,h,i)perylene	ng/g	*11	*14	12	14	31		
biphenyl	ng/g	4.4	< 1.1	< 20	-	-		
methyl biphenyl	ng/g	< 2.3	< 0.96	< 20	-	-		
C2 substituted biphenyl	ng/g	< 1.6	< 0.55	< 20	-	-		
dibenzothiophene	ng/g	1.9	< 1.2	< 3	2.6	4.3		
methyl dibenzothiophene	ng/g	11	< 10	< 20	53	165		
C2 substituted dibenzothiophene	ng/g	42	< 4.2	110	98	87		
C3 substituted dibenzothiophene	ng/g	82	< 3.6	210	27	10		
fluoranthene	ng/g	2.7	2.8	3	1.9	14		
methyl fluoranthene/pyrene	ng/g	16	17	70	-	-		
fluorene	ng/g	2	2.7	< 3	2.8	19		
methyl fluorene	ng/g	< 1.9	< 2.2	< 20	29	69		
C2 substituted fluorene	ng/g	< 2	< 3	60	70	171		
indeno(c,d-123)pyrene	ng/g	*6.4	< 13	6	nd	43		
phenanthrene	ng/g	14	9.8	7	11	38		
methyl phenanthrene/anthracene	ng/g	41	24	40	42	205		
C2 substituted phenanthrene/anthracene	ng/g	40	40	100	60	196		
C3 substituted phenanthrene/anthracene	ng/g	36	51	180	nd	132		
C4 substituted phenanthrene/anthracene	ng/g	150	36	110	nd	nd		
pyrene	ng/g	6	5.1	12	3.7	9.0		

^(a) Sample collected by AENV, submitted to RAMP for analysis in 1999.

^(b) Sample analyzed by Environment Canada.

- = no data; nd = concentration < analytical detection limits.

* PAH concentrations are reported with the limitation that the GCMS spectra used to develop these values were ill-defined (i.e., these numbers may contain a larger degree of error than those produced from clearly defined spectra).

8 ACID SENSITIVE LAKES – RESULTS AND DISCUSSION

Field Parameters

The field data (i.e., lake depth; vertical profiles of temperature, pH, conductivity and dissolved oxygen; Secchi depth) collected during the summer of 1999 are provided in Appendix V. The correspondence between field and lab pH is examined in the following section. No further analysis of the field parameter data was carried out in 1999.

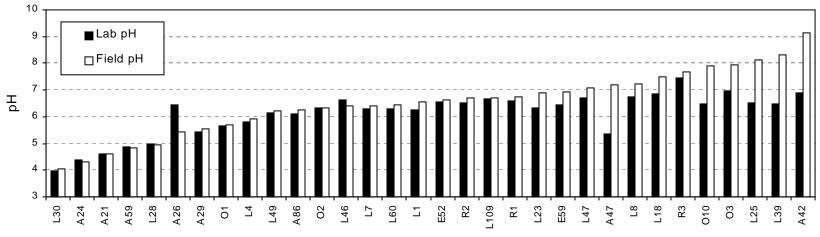
pH and Alkalinity

Water chemistry variables related to acidity varied considerably among the lakes surveyed in 1999. Field pH ranged between 4 and 9, with about two-thirds of the 32 lakes having pH values <7 (Figure 8.1). All but one (R3) lab pH measurements were <7. The pH data indicate that the set of lakes selected for acidification monitoring was characterized by lower pH than typically observed in the province, which is consistent with their general acid-sensitivity. Two-thirds of Alberta lakes for which data are available have pH values >7.5 (Saffran and Trew 1996).

There was a reasonable correspondence between field and lab-measured pH for each lake, with seven exceptions (A26, A47, O10, O3, L25, L39, A42) (Figure 8.1). Field pH for Lake A26 was 16% lower than lab pH. For the remaining six lakes, field pH was 14 to 35% higher than lab pH. Most of these differences occurred closer to the high end of the pH range represented by the 1999 data set (Figure 8.1). Higher field pH relative to lab pH is frequently observed during field surveys because CO_2 production by algae in water samples during transport can cause a lowering of pH. For consistency with previous data summaries of acid sensitivity in Alberta (e.g., Saffran and Trew 1996), lab pH (data for all lakes are shown in Figure 8.5) was used as the primary measure of acidity in this document.

Total alkalinity also varied widely among lakes, with an overall range of 0 to 48.3 mg/L CaCO₃. The majority of total alkalinity data measured in 1999 coincided with the historical information (Figure 8.2; data for all lakes are shown in Figure 8.5), thus confirming the lake selection criteria. However, concentrations in four lakes (A26, L47, L46 and O3) were 2 to 3.5 times higher in 1999 than expected based on historical data, and those in two lakes (A47, L4) were 2 to 4 times lower. For comparison with this variation, the seasonal and year-to-year variation in water chemistry within lakes is illustrated for selected parameters in Appendix V (Tables V-1 to V-3), for three lakes, L4, L7 and L25

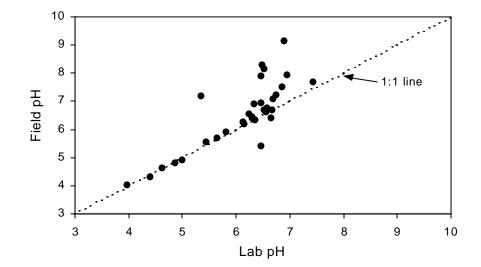
(data from AENV). The deviation from historical data in the lakes sampled in 1999 is not necessarily outside of the range of natural variation within a lake of low alkalinity, considering that total alkalinity may vary up to 2.5-fold between consecutive years and up to 5.6-fold from the minimum to the maximum value for the period of record (based on June/July averages in Lake L4).

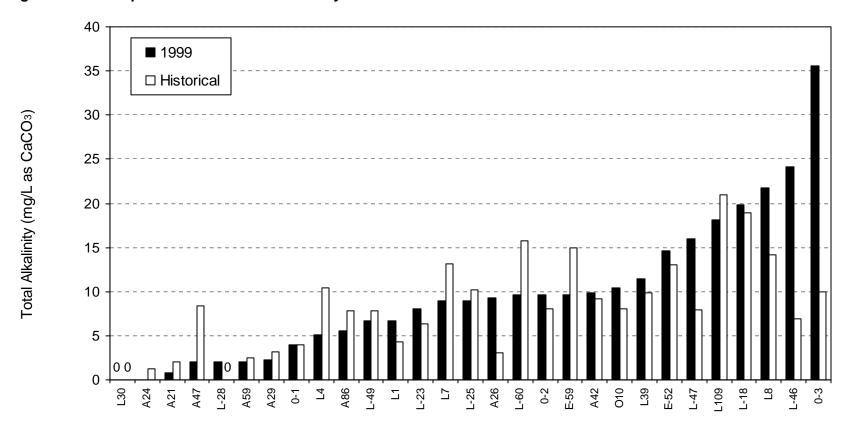

On the basis of the 1999 alkalinity data, 21 of the 32 lakes were highly sensitive to acidic deposition (alkalinity of 0 to 10 mg/L as CaCO₃) and 7 lakes were moderately sensitive (11 to 20 mg/L) (Figure 8.2). Four lakes (L8, L46, O3, R3) showed only low sensitivity in 1999 (>20 mg/L). Of these lakes, only two (O3, R3, Figure 8.5) had alkalinity values that were substantially higher than the upper limit of the range intended for this monitoring program (0 to 20 mg/L as CaCO₃).

There was a strong, statistically significant relationship between log-alkalinity and pH (linear regression, P<0.001, r^2 =0.92) (Figure 8.3). The "steepest" part of the curve is between alkalinity values of 0 and 10 mg/L. Accordingly, lakes below a total alkalinity of 10 mg/L are often called the "transition lakes" because they are particularly susceptible to acidification; in such lakes, small changes in alkalinity will result in rapid changes in pH.

Major lons and Colour-Related Variables

Concentrations of dissolved ions in the 32 lakes were low to moderate, with a total dissolved solids (TDS) range between 20 and 120 mg/L (Figure 8.4). Conductivity, TDS and concentrations of most ions varied among lakes without obvious grouping of lakes at any level, although there were occasional high measurements (e.g., TDS = 115 mg/L in Lake A59; Figure 8.4). The variation in sulphate concentration was discontinuous, with higher levels observed in a cluster of lakes in the Birch Mountains (L18, L60, L47, L46, L49), relative to all other lakes (Figure 8.4).


Colour and DOC concentration spanned wide ranges in the study lakes (Figure 8.5), as intended during the selection of lakes for this monitoring program. There was no obvious break-point between clear water and brown water lakes in terms of DOC or colour. Caribou Mountains lakes tended to have higher colour than Canadian Shield Lakes, as anticipated during lake selection, but a similar trend was not apparent in DOC concentration. There was a strong, significant relationship between DOC and colour, with two conspicuous outliers, lakes A42 and A59 (linear regression, P<0.001, r^2 =0.63, A42 and A59 removed from the analysis). These two lakes had the highest TP concentrations in the data set (200.4 and 192.2 µg/L, respectively), with corresponding chlorophyll *a* concentrations in the range characteristic of algal blooms (112.4 and 75.6 µg/L).



8-3

Golder Associates

8-4

Lake

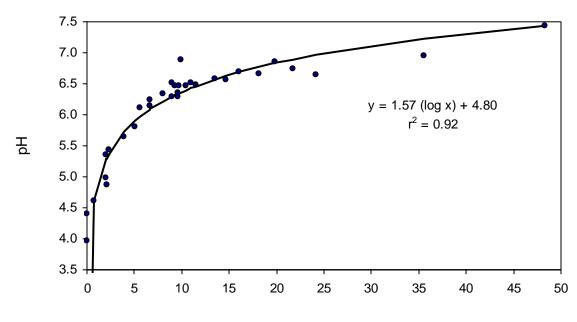


Figure 8.3 pH as a Function of Total Alkalinity in the Lakes Sampled in 1999

Alkalinity (mg/L CaCO₃)

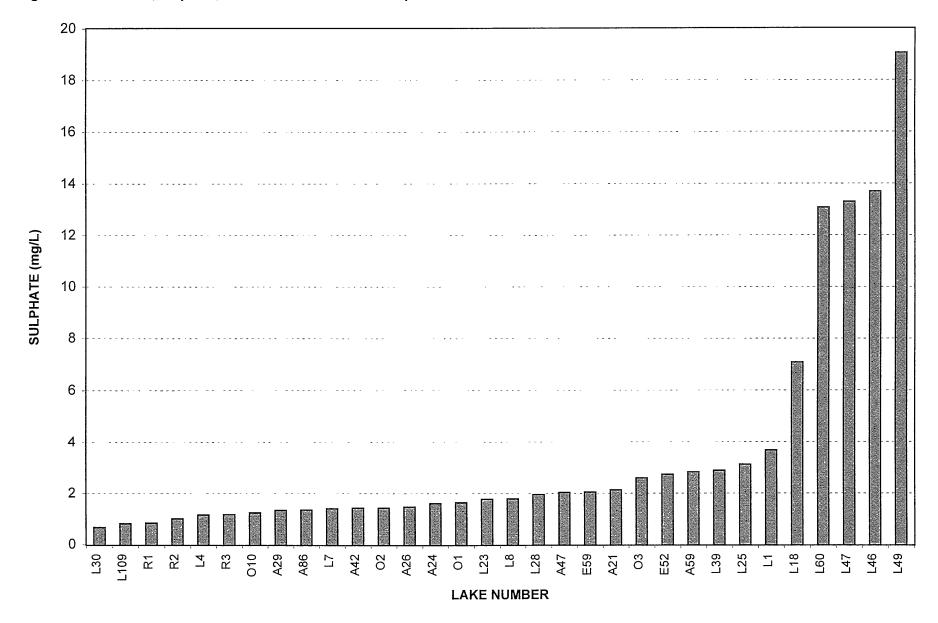
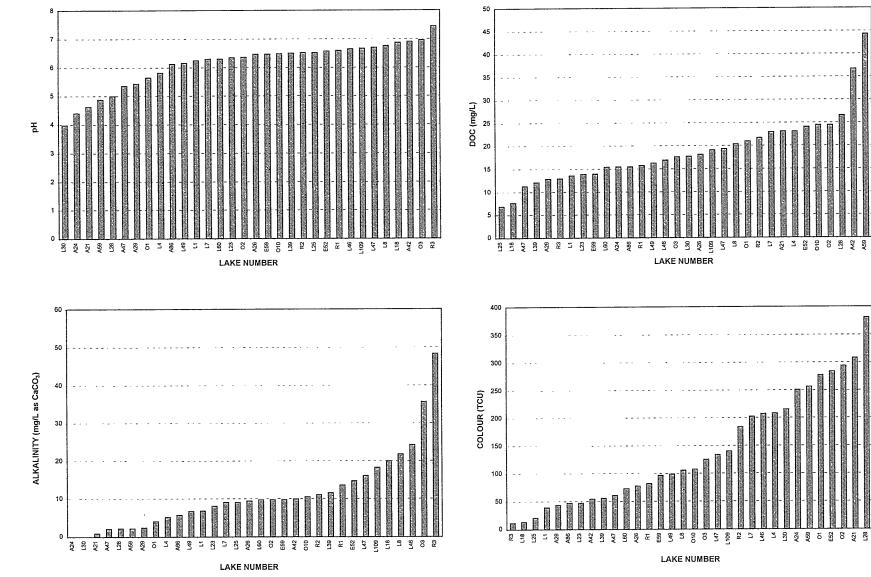



Figure 8.4 Calcium, Sulphate, Total Dissolved Solids and Specific Conductance in the Lakes Sampled in 1999

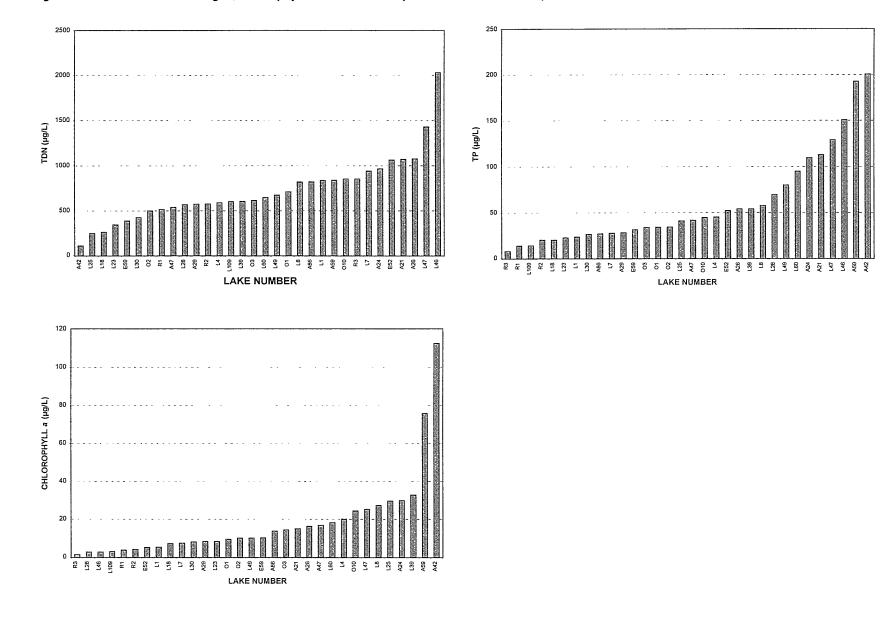
Golder Associates

1

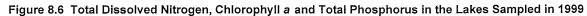
Figure 8.5 pH, Total Alkalinity, Dissolved Organic Carbon and True Colour in the Lakes Sampled in 1999

8-7

Nutrients and Trophic Status


The 32 lakes varied widely in nutrient and chlorophyll concentrations. Total phosphorus (TP) concentration ranged from 8 to 200 µg/L (Figure 8.6). Based on chlorophyll *a* concentration (Figure 8.6), one lake was oligotrophic ($<2.5 \mu$ /L), 10 lakes were mesotrophic ($2.5 to 8 \mu$ g/L), 14 lakes were eutrophic (8 to 25 µ/L) and 7 lakes were hyper-eutrophic ($>25 \mu$ g/L) (trophic categories from Mitchell and Prepas 1980). As expected, there was a significant positive relationship between TP and chlorophyll *a* (linear regression, P<0.001, r²=0.55) (Figure 8.7), though highly coloured lakes tended to have lower chlorophyll levels than expected based on TP. Concentrations of phosphorus and nitrogen variables were significantly inter-correlated with the exception of particulate nitrogen (PN) (Pearson correlations; P<0.05). The chlorophyll *a* : TP ratio was not affected by pH (Figure 8.7), but was significantly negatively correlated with colour, TDS and dissolved nitrogen parameters (Pearson correlations; P<0.05).

Relationships with pH


As described above, pH was strongly related to log-alkalinity (Figure 8.3). In addition, the raw or log-transformed concentrations of most anions (Cl⁻, log-HCO₃⁻) and cations (log-Ca⁺², K⁺, log-Mg⁺², Na⁺) and conductivity were significantly positively correlated with pH, and colour was negatively correlated with pH (Pearson correlations, P<0.05). Of these, the strongest linear relationships were with log-HCO₃⁻ (r=0.96), log-Ca²⁺ (r=0.88) and log-Mg²⁺ (r=0.89). There was no apparent relationship between pH and sulphate concentration.

Suitability of the Lakes for the RAMP Acidification Monitoring Network

The lakes sampled in 1999 generally satisfied the selection criteria outlined in Section 3.1.1, and are thus suitable for continued monitoring under RAMP. Nearly all lakes were moderately to highly sensitive to acidification, with the exception of the two lakes with the highest total alkalinity values (O3 and R3, total alkalinity values of 35.5 and 48.3 mg/L, respectively). Since these lakes were less sensitive to acidification than originally intended for this monitoring program, they should be replaced with more acid-sensitive lakes in the future.

8-9

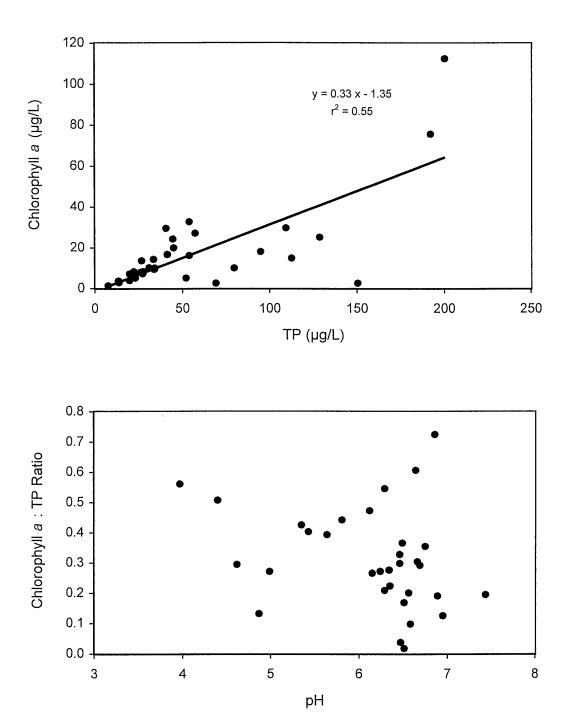


Figure 8.7 Scatter-plots of Chlorophyll *a* versus TP and the Chlorophyll *a* : TP Ratio versus pH in the Lakes Sampled in 1999

Golder Associates

An additional issue regarding lake selection concerns the intended location of monitoring lakes along a gradient of acidic deposition radiating from the oil sands region. With the recent refinements to the modelling of acidic deposition in the oil sands area (i.e., Suncor 2000), the size of the area subject to deposition rates above the current guideline value of 0.25 k_{eq} H⁺/ha/a has become considerably smaller. As a result, only a very small subset of the 32 lakes sampled in 1999 are within (L1) or near (L4, L7) the 0.25 k_{eq} H⁺/ha/a deposition isopleth. Future oil sands developments may also alter deposition patterns and rates. Therefore, it may be useful to select a small number of additional lakes closer to the high deposition zone, if such lakes exist.

This lake monitoring program will continue to evolve as new information and needs dictate. Certain recommendations arising from the NO_x/SO_2 Management Working Group Acid Deposition Science Colloquium, held in Edmonton during March 20 to 22, 2000, are now being considered for implementation into this program. In addition, future evaluations of the data generated by this component would benefit from analyses of certain ionic ratios that can serve as sensitive indicators of acidification, and calculation of the critical load for each lake forming the RAMP network. Reevaluating sampling frequency, and potentially increasing it in a subset of the 32 lakes, may also be useful to better characterize seasonal variation.

9 SUMMARY AND CONCLUSIONS

9.1 SUMMARY

9.1.1 Water and Sediment Quality

Two water samples were collected from the Athabasca River in 1999: one near the Embarras River and one in the Athabasca River Delta. A composite sediment sample was also taken from the river delta. Sampling results indicate:

- Athabasca River waters were non-toxic to bacteria.
- Water quality near the Embarras River was generally consistent with historical data, with the exception of higher than normal total zinc and total aluminum concentrations.
- Total suspended solids (TSS), total dissolved solids (TDS), total aluminum and total barium levels in the Athabasca River Delta were higher in 1999 than typically observed in this area.
- Sediments from the Athabasca River Delta were found to significantly affect the growth and/or survival of several species of invertebrates.
- Methyl naphthalene was the only substance present in the delta sediments found to exceed sediment quality guidelines.

Seasonal water quality samples were collected from three locations on the Muskeg River in 1999. Water and/or sediment samples were also collected from the Steepbank River, the Alsands Drain and McLean, Jackpine, Shelley, Muskeg, Stanley and Wapasu creeks in 1999. Water quality in most of these streams was generally consistent with historical data. Some parameters exceeded regulatory guidelines as they have in the past. Key results from the 1999 water and sediment sampling program include:

- The continued presence of chronic toxicity in the upper Muskeg River under fall and winter conditions (assessed using the water flea *Ceriodaphnia dubia* and fathead minnows).
- Detectable levels of naphthenic acids (i.e., >1 mg/L) in the Muskeg River, the Alsands Drain, McLean Creek and Muskeg Creek.
- Higher than normal TDS and total aluminum concentrations at most water quality sampling sites.
- High PAH concentrations in sediments from McLean Creek, in comparison to sediments from the Muskeg River and the Athabasca River Delta.

- Sediments from McLean Creek were found to significantly affect the growth of several species of invertebrates; no toxic effects were observed with sediments from the mouth of the Muskeg River.
- Sediment PAH levels were generally consistent along the length of the Muskeg River.

9.1.2 Fish Populations

The fisheries component of the 1999 RAMP focused on the mainstem Athabasca River as well as the Muskeg and Steepbank rivers. Work on the Athabasca River represented a continuation of monitoring efforts conducted in previous years, although the fish inventory was limited to the spring, and sentinel monitoring focused on a small-bodied fish species. Sentinel monitoring using a small-bodied fish species was also initiated on the Muskeg and Steepbank rivers. Results of the 1999 fish component of RAMP indicate:

- A total of 13 species were captured in the Athabasca River during the spring fish inventory. Species composition and relative abundance was similar to that observed in the spring of 1998.
- Walleye was the only KIR species captured in sufficient numbers to evaluate population parameters. Age and length distributions were consistent with previous years, although size-at-age showed greater variability. The change in size-at-age of walleye in 1999 may suggest a possible decrease in food availability, perhaps related to abnormally low water levels in the Athabasca River in 1998 and 1999.
- Based on abundance, distribution and gonadal development, trout-perch was selected as the small-bodied sentinel species for the Athabasca River.
- Due to the reduced potential of large-scale movement, it was possible to collect trout-perch from a reference site located within the Oil Sands Region, as well as exposure sites near oil sands developments.
- Trout-perch collected downstream of Suncor's discharge and the confluence of the Muskeg River showed few differences in fish characteristics relative to reference fish or each other. Power analyses confirmed that samples sizes were adequate to detect differences had they existed. Future work evaluating the mobility of trout-perch may be needed.
- Based on distribution and gonadal development, slimy sculpin was selected as the small-bodied sentinel species for the Muskeg and Steepbank rivers.
- Attempts to collect slimy sculpin from a separate reference river were not successful due to poor access and/or capture success.

- Sculpin from the Muskeg River were older and had reduced body weight, condition, gonad size and liver size suggesting a response to lower food availability. Low water levels related, in part, to beaver dams may have affected habitat quality/quantity; it is unknown what effect the observed parasitism has had on metabolism.
- Sculpin from the lower Steepbank River were older and larger but showed few other differences in fish characteristics.
- Responses of slimy sculpin from the Muskeg and Steepbank rivers need to be confirmed over time before definitive conclusions can be made. Additional reference sites are needed to more accurately define the full range of natural variability in fish characteristics. As well, monitoring should include detailed characterization of the habitat at each site.
- Power analyses confirmed that sample sizes of sculpin were adequate to detect site differences in most parameters, although greater numbers of males is recommended.
- In general, improved techniques for ageing trout-perch and slimy sculpin is needed to increase our confidence in age estimates.

9.1.3 Wetlands

Seasonal water samples were collected from Shipyard Lake in 1999. A single sediment sample was collected from Kearl Lake in 1998 for PAH analysis by Environment Canada; sample results were submitted to RAMP in 1999. Results of the 1999 wetlands water and sediment quality sampling program indicate:

- Water quality in Shipyard Lake was generally consistent with historical data and consistent between seasons (spring, summer and fall of 1999).
- Shipyard Lake waters were non-toxic to bacteria and did not contain detectable levels of naphthenic acids.
- As in previous sampling events, total iron and total manganese levels in Shipyard Lake exceeded water quality guidelines in 1999; total phosphorus concentrations in Shipyard Lake in the spring of 1999 also exceeded the relevant water quality guideline.
- Sediments from Kearl Lake generally contained higher PAH concentrations than sediments from the Muskeg River.
- Methyl naphthalene and dibenzo(a,h)anthracene were the only substances present in Kearl Lake sediments found to exceed sediment quality guidelines.

9.1.4 Acid Sensitive Lakes

Water samples were collected from 32 acid sensitive lakes in north-eastern Alberta to establish a network of lakes for long-term monitoring of acidic deposition. These lakes were selected based on historical data collected by AENV. The field program was carried out during the summer of 1999. Results of the 1999 acid sensitive lakes component of RAMP indicate:

- Acid sensitive lakes in north eastern Alberta display a wide variation in water quality and productivity.
- Many of the lakes surveyed are naturally acidic (with pH<7) and most have lower pH than typically observed in other Alberta lakes.
- On the basis of the 1999 alkalinity data, 28 of the 32 lakes were moderately to highly sensitive to acidic deposition (alkalinity of 0 to 20 mg/L as CaCO₃) and four lakes showed low sensitivity (>20 mg/L).
- There was a strong relationship between total alkalinity and pH in the data set for the 32 lakes. A number of other parameters (colour, conductivity and most anions and cations) were also correlated with pH.
- Colour and DOC concentration spanned wide ranges in the study lakes, as intended during the selection of lakes for this monitoring program.
- The 32 lakes varied widely in nutrient and chlorophyll concentrations. Based on chlorophyll *a* concentration, one lake was oligotrophic (<2.5 μ g/L), 10 lakes were mesotrophic (2.5 to 8 μ g/L), 14 lakes were eutrophic (8 to 25 μ g/L) and 7 lakes were hyper-eutrophic (>25 μ g/L).
- The lakes sampled in 1999 generally satisfied the selection criteria developed for this program and are thus suitable for continued monitoring under RAMP. Potential minor modifications to the program include replacing two lakes of low acid sensitivity with more sensitive lakes and, if possible, adding lakes that are closer to the area of highest acidic deposition rate. This lake monitoring program will continue to evolve as new information and needs dictate.

9.1.5 Quality Assurance/Quality Control

The results of the RAMP QA/QC assessment of the field sampling and laboratory analysis indicate that water quality data analyzed by ETL, the sediment quality data analyzed by AXYS and data analysis performed by Golder are valid. A summary of the QA/QC assessment is provided below:

• ETL's intra-laboratory precision is high.

- Inter-laboratory analytical variation for water quality is moderate; minor differences were found in data analyzed by ETL and ARCV because ARCV often used lower detection limits.
- Inter-laboratory analytical variation for sediment quality is low.
- In summer, ETL reported higher levels of metals than ARCV in the total and dissolved metal field blanks. ETL's levels of total and dissolved metals were more comparable to ARCV's results in fall.
- Dissolved metal levels reported by ETL and ARCV occasionally exceeded total metal levels. Because this occurred sporadically in both laboratories, the dissolved metal filtering procedure is deemed satisfactory.
- Analysis of lab equipment blanks and spiked samples indicate that laboratory sampling procedures are satisfactory.
- Less than 5% of the values from the laboratory reports were entered into the Golder database incorrectly. These mistakes were corrected.

The RAMP QA/QC assessment has identified two areas where ETL data quality can be improved: prevention of field and trip blank contamination and total and dissolved metal analysis. Golder's course of action and recommendations in these areas are described below.

The water quality results of the winter field and trip blank indicated that some contamination occurred. The source of the contamination (i.e., field sampling procedure, laboratory analysis process, improper purification of deionized water) is undetermined. To assure greater water quality data validity in the future, RAMP will request ETL to split a large sample of deionized water; one portion will remain in the laboratory, the other portion will be used for field blanks and trip blanks at the project site. All these will be analyzed. With this information, field and trip blank water quality data can be compared to the water quality of laboratory deionized water.

Total and dissolved metal field blanks analyzed by ETL in summer consistently reported higher levels of a few metals (i.e., aluminum, manganese and zinc) than levels reported by ARCV. Golder notified ETL of potential contamination in their analysis process and corrective action was employed. As a result, fall total and dissolved metal data may be of higher quality; summer data should be used with caution since reported levels may be overestimated.

Analysis of QA/QC samples (i.e., split samples, field and trip blanks, total and dissolved metal blanks and laboratory equipment blanks) indicate that minor variation in water and sediment quality data within and between laboratories can

be expected. These differences may reflect slight errors in blank representation, field sampling technique or laboratory analysis.

9.2 CONCLUSIONS

As 1999 is only the third year of monitoring in a long-term program, it is too early to draw many conclusions. The 1999 water quality data were generally consistent with historical data on both the Athabasca River and the tributaries, although some values were higher (e.g., aluminum, total dissolved solids) or lower than before. As more data are added each year, the data set will begin to contain the full range of historical and natural variation. Many results from the fish study on the Athabasca River are consistent with 1998 results, including the fish species list, the relative abundance of fish species captured in the spring and estimates of abundance (for the most abundant species).

Some of the conclusions made a year ago have been born out with more data. Water quality guidelines cannot be met for all parameters and will not be suitable as a simplistic test for effects of the development. Tests of significant change, based on adequate data are the primary tool for assessment of effects related to oil sands development. Some guidelines are likely exceeded due to natural and historic conditions.

The preliminary conclusion made in 1998 (i.e., that annual differences in climatic and hydrologic conditions can affect water quality and fish populations) is supported by the results for 1999. Both 1998 and 1999 were dry years. Maximum daily stream discharges and the cumulative flow volume (from spring melt to late summer) were much lower than normal in 1999. For all gauged stations, 1999 was dryer than 1998, and for several streams it was the driest year on record. Due to these conditions, RAMP data represent the water quality deterioration under natural, near drought conditions (i.e., the concentrations of many constituents of the water are concentrated under these conditions and may exceed guideline levels). These conditions also provide useful data on the range of effects that occur under near-drought conditions. For example, the reason for the change in size-at-age for walleye in the Athabasca River in 1999 is uncertain, but the data suggest a possible decrease in food availability. A similar conclusion was made in 1998, when walleye were shorter for any given age relative to walleye caught in 1997. Examples are also available from the tributaries. In general, the sentinel fish species (slimy sculpin) from the Muskeg River had reduced body weight, condition, gonad weight and liver weight suggesting a response to lower food availability relative to the reference site. Reduced food availability may be due to low water levels, and therefore reduced habitat, in this section of the river. Without sufficient data to understand the effects of extreme natural conditions, they become confounding factors when

interpreting mining-related effects. Therefore, the results for 1998 and 1999 may prove to be particularly useful in the future.

In addition to the collection of core information, a major goal of the initial years of this study is to refine the monitoring so that it is a better tool to assess the effects of the oil sands developments. Benefits of doing this have been demonstrated this year. Due to the reduced potential for large-scale movement, use of a small-bodied species in the Athabasca River (trout-perch) and the tributaries (slimy sculpin) facilitated selection of reference sites within the Oil Sands Region, as well as exposed sites in close proximity to mining activities. For example, the reference site for trout-perch was located within the oil sands region yet upstream of the mining influences; whereas the reference site used for longnose sucker in 1998 was located beyond the oil sands influence. The sampling design for the trout-perch provides a better assessment of the potential effects specific to mining activities; whereas, the study of longnose sucker could not separate the combined influences of the oil sands formation, mining activities and the town of Fort McMurray.

The 1999 field program demonstrated that adequate numbers of small-bodied sentinel fish could be collected in the Athabasca River and the tributaries. For both female and male trout-perch, sufficient sample sizes were collected from each site to detect at least a 30% difference among sites, and in some cases a 20% difference. Slimy sculpin was selected as the sentinel species on the Muskeg and Steepbank rivers. Power analysis confirmed that sample sizes were adequate to detect site differences in most parameters; however, more effort is needed to collect higher numbers of males and additional reference sites are needed to ensure the full range of natural variability in fish characteristics within the Oil Sands Region.

Overall, there were few differences in whole organism characteristics of troutperch among the three study sites on the Athabasca River. There was no evidence indicating that trout-perch collected downstream of Suncor's discharge were different from reference fish. With the exception of a possible reduction in energy storage, trout-perch downstream of the Muskeg River were also similar to fish collected at the reference site and below the other exposed site. Power analysis confirmed that sample sizes were adequate to detect site differences in fish parameters had they existed. One of the major achievements in 1999, is that the studies have verified that RAMP now has an assessment tool in the form of this small-bodied fish, that has more precision (i.e., it can separate mining effects from general oil sands effects) and statistical strength (i.e., it can identify differences if they are present) than the tool used before. In 1999, a long-term acidification monitoring network was established, which forms a new component of RAMP. The objective of this component is to monitor lake water chemistry as an early-warning indicator of excessive acidic deposition. During 1999, the 32 lakes forming the network were selected from a large number of candidate lakes. A field program was implemented to collect baseline water chemistry data and to verify that the lake selection criteria were satisfied by the candidate lakes. The 1999 data indicate that most of the selected lakes were moderately to highly acid-sensitive and provided a reasonable crosssection of the wide range of water chemistry in north-eastern Alberta. Thus, no major modifications are required to this component in the near-future, though it is expected to evolve as new information and needs dictate.

10 CLOSURE

We trust the above meets your present requirements. If you have any questions or require additional details, please contact the undersigned.

Respectfully submitted,

GOLDER ASSOCIATES LTD.

Written by:

Marie Lagimodiere, MES, P.Biol. Aquatic Biologist

Jean-Philippe Bechtold, M.A.Sc., P.Biol. Water Quality Specialist

Wade N. Gibbons, Ph.D., Senior Aquatic Biologist

Zsolt Kovats, M.Sc. Aquatic Ecologist

Reviewed by:

John Gulley, M.Sc., P.Biot.

Oil Sands Project Director

David A. Fernet, M.Sc., P.Biol. Principal

Pat Tones, Ph.D. Associate

Mark Digel, M.Sc., M.E.Des. Sr. Water Quality Specialist

00 00

Stella Swanson, Ph.D., P.Biol. Associate

10-1

11 REFERENCES

- Alberta Environmental Protection (AEP). 1995. Electrofishing policy respecting injuries to fish. Alberta Fisheries Management Division. Edmonton, Alberta.
- Alberta Environment (AENV). 1999. Surface water quality guidelines for use in Alberta. Environmental Service, Environmental Sciences Division. Edmonton, Alberta.
- Alldredge, J.R. 1987. Sample size for monitoring of toxic chemical sites. Environ. Monitor. Assess. 9:143-154.
- Bond, W.A. 1980. Fishery resources of the Athabasca River downstream of Fort McMurray, Alberta: Volume I. Prepared for the Alberta Oil Sands Environmental Resource Program by the Freshwater Institute, Winnipeg, Manitoba, AOSERP. Report 89. 81 p.
- Bond, W.A. and K. Machniak. 1979. An intensive study of the fish fauna of the Muskeg River watershed of northeastern Alberta. Prepared for the Alberta Oil Sands Environmental Resource Program by the Freshwater Institute, Winnipeg, Manitoba, AOSERP. Report 76.
- Canadian Council of Ministers of the Environment (CCME). 1999. Canadian environmental quality guidelines. Canadian Council of Ministers of the Environment, Winnipeg, Manitoba.
- Cohen, J. 1988. Statistical power analysis for the behavioural sciences. 2nd Ed. L. Erlbaum Assoc., Hillsdale, NJ. 567 p.
- Environment Canada. 1997. Fish survey expert working group final report. EEM Technical Management Committee. EEM/1997/6.
- Environment Canada and Dept. of Fisheries and Oceans. 1995. Further guidance document for the adult fish survey for the aquatic environmental effects monitoring related to federal Fisheries Act requirements. EEM 1. 72 p.
- Erickson, P. 1987. An assessment of the potential sensitivity of Alberta Lakes to acidic deposition. Water Quality Control Branch, Alberta Environment. 137 pp.

- Faul, F. and E. Erdfelder. 1992. GPOWER. A priori, post-hoc and compromise power analyses for MS-DOS [Computer program]. Bonn, Germany. Bonn University, Dept. of Psychology.
- Gibbons, W.N. and K.R. Munkittrick. 1994. A sentinel monitoring framework for identifying fish population responses to industrial discharges. J. Aquat. Ecosyst. Health 3:227-237.
- Gibbons, W.N., K.R. Munkittrick and W.D. Taylor. 1998. Monitoring aquatic environments receiving industrial effluents using small fish species 2: comparison between response of trout-perch (*Percopsis omiscomaycus*) and white sucker (*Catostomus commersoni*) downstream of a pulp mill.
- Golder Associates Ltd. (Golder). 1996a. Aquatic baseline report for the Athabasca, Steepbank and Muskeg rivers in the vicinity of the Steepbank and Aurora mines. Final report for Suncor Inc., Oil sands Group. Fort McMurray, Alberta. 164 p. + App.
- Golder. 1996b. 1996 fisheries investigations of the Athabasca River: addendum to Syncrude Aurora mine environmental baseline program. Final report for Syncrude Canada Ltd.
- Golder. 1998a. Oil Sands Regional aquatics monitoring program (RAMP) 1997. Final report for Suncor Energy Inc. Oil Sands Group, Syncrude Canada Ltd., and Shell Canada Ltd. 141 p. + App.
- Golder. 1998b. Aquatic resources baseline study for the Muskeg River Mine Project. Final report to Shell Canada Limited, Calgary, Alberta.
- Golder. 1999a. Oil sands regional aquatics monitoring program (RAMP) 1998. Final report for the RAMP Steering Committee. 183 p. +App.
- Golder. 1999b. Oil sands regional monitoring program: field technical procedures. Final report submitted to the RAMP Steering Committee.
- Golder. 2000. Oil sands area climatic and hydrologic monitoring program in 1999. Prepared for Syncrude Canada Ltd., Shell Canada Limited, Mobil Oil Canada Properties and Suncor Energy Inc. Draft in prep.
- Grubbs, F.E. 1971. Procedures for detecting outlying observations in samples. Technometrics 11:1-22.

- Hodson, P.V., M. McWhirter, K. Ralph, B. Gray, D. Thivierge, J.H. Carey, G. Van Der Kraak, D.M. Whittle and M. Levesque. 1992. Effects of bleached kraft mill effluent on fish in the St. Maurice River, Quebec. Environ. Toxicol. 11:1635-1652.
- Hoke, R.A., J.P. Giesy and J.R. Adams. 1990. Use of linear orthogonal contrasts in analysis of environmental data. Environ. Toxicol. Chem. 9:815-819.
- Jardine, J.J. 1994. Impacts of physical stressors on physiological fitness of white sucker at a bleached kraft mill site. M.Sc. thesis, University of Guelph, Guelph, Ontario.
- Jones, M.L., G.J. Mann and P.J. McCart. 1978. Fall fisheries investigation in the Athabasca and Clearwater rivers upstream of Fort McMurray. Volume I. Prepared for the Alberta Oil Sands Environmental Research Program by Aquatic Environments Ltd. AOSERP Report 36. 71 pp.
- Machniak, K. and W.A. Bond. 1979. An intensive study of the fish fauna of the Steepbank River watershed of northeastern Alberta. Prepared for the Alberta Oil Sands Environmental Research Program by Environment Canada, Freshwater Institute, Winnipeg, Manitoba. AOSERP Report 61. 194 p.
- Machniak, K., W.A. Bond, M.R. Orr, D. Rudy and D. Miller. 1980. Fisheries and aquatic habitat investigations in the MacKay River watershed of northeastern Alberta. Prepared for the Alberta Oil Sands Environmental Research Program and Syncrude Canada Ltd. by Department of Fisheries and Oceans. AOSERP Report 93. 173 pp.
- MacKay, W.C., G.R. Ash and H.J. Norris. (eds.). 1990. Fish ageing methods for Alberta. R.L. & L. Environmental Services Ltd. in assoc. with Alberta Fish and Wildl. Div. and Univ. of Alberta, Edmonton. 113 p.
- McMaster, M.E., G.J. Van Der Kraak, C.B. Portt, K.R. Munkittrick, P.K. Sibley, I.R. Smith and D.G. Dixon. 1991. Changes in hepatic mixed-function oxygenase (MFO) activity, plasma steroid levels and age at maturity of white sucker(*Catostomus commersoni*) population exposed to bleached kraft pulp mill effluent. Aquat. Toxicol. 21:199-218.
- McMaster, M.E., K.R. Munkittrick, J.J. Jardine, R.D. Robinson and G.J. Van Der Kraak. 1995. Protocol for measuring in vitro steroid production by fish gonadal tissue. Can. Tech. Rep. Fish Aquat, Sci, 1961:78.

- Minns, C.K. 1995. Allomtery of home range size in lake and river fishes. Can. J. Fish. Aquat. Sci. 52:1499-1508.
- Mitchell, P.A., and E.E. Prepas (editors). 1980. Atlas of Alberta lakes. University of Alberta Press, Edmonton, Alberta. 675 pp.
- Munkittrick, K.R. 1992. A review and evaluation of study design considerations for site-specifically assessing the health of fish populations. J. Aquat. Ecosyst. Health 1:283-293.
- Paine, M.D. 1998. Volume II: CANMET/INTEMIN manual on statistical analysis of environmental data. Prepared for Natural Resources Canada, Canada Centre for Mineral and Energy Technology (CANMET), Ottawa, Ont., by Paine, Ledge and Associates (PLA), North Vancouver, B.C. 228 pp.
- Parrott, J. and J. Sherry. 1999. Fish health effects from oil sands wastewater discharges and naturally-occurring oil sands compounds in the Athabasca River system. Interim report prepared for the Panel of Research and Development (PERD). 14 p.
- R.L.&L. Environmental Services Ltd. (R.L.&L.). 1982. Aquatic investigations in Hartley Creek area, 1981 (SandAlta Project). Report No. Phase II-18.
- R.L.&L. 1989. OSLO Project: water quality and fisheries resources baseline studies.
- Saffran, K.A., and D.O. Trew. 1996. Sensitivity of Alberta lakes to acidifying deposition: and update of sensitivity maps with emphasis on 109 northern lakes. Water Sciences Branch, Water Management Division, Alberta Environmental Protection. 68 pp.
- Shell Canada Limited (Shell). 1975. Environmental impact assessment, Lease 13 mining project, Alberta Oil Sands. Report for Land Conservation and Reclamation Division, Alberta Environment, Edmonton, Alberta.
- Shell. 1997. Muskeg River Mine Project EIA. Prepared by Golder Associates Ltd. Volumes 1,2,3, and 5.
- Sloof, W., C.F. Van Kreijl and A.H. Baars. 1983. Relative liver weights and xenobiotic metabolizing enzymes of fish from polluted surface waters in the Netherlands. Aquat. Toxicol. 4:1-14.

Golder Associates

- Spafford, M.D. 1999. Trout-perch *Percopsis omiscomaycus* (Walbaum) and lake chub *Couesius plumbeus* (Agassiz) as Sentinel Monitoring Species in the Athabasca River, Alberta. M.Sc. Thesis. University of Alberta, Edmonton, Alberta, Canada
- Suncor Energy Inc., Oil Sands Group. 1998. Project Millennium Application -Environmental impact assessment. Volume 2A: Introduction, Air Quality, Aquatics. Prepared by Golder Associates Ltd.
- Suncor Energy Inc. 2000. Firebag In-Situ Oil Sands Project application. Volume 2A, Environmental Impact Assessment. Submitted to Energy and Utilities Board and Alberta Environment. Prepared by Golder Associates Ltd.
- Suter, G.W. II, B.W. Cornaby, C.T. Hadden, R.N. Hull, M. Stack and F.A. Zafran. 1995. An approach for balancing health and ecological risks at hazardous waste sites. Risk Analysis 15:221-231.
- Syncrude Canada Ltd. 1999. Supplemental information response: Mildred Lake Upgrader Expansion Application. Submitted to Alberta Energy and Utilities Board and Alberta Environmental Protection. 121 pp + Appendices.
- Target Loading Subgroup. 1996. Final report of the Target Loading Subgroup on critical and target loading in Alberta. Final report to the Clean Air Strategic Alliance SO₂ Management Project Team. 13 pp.
- United States Environmental Protection Agency (U.S. EPA). 1999. National recommended water quality criteria Correction. Report No. EPA 822-Z-99-001.
- Wetzel, R.G., 1983. Limnology, 2nd Edition. Saunders College Publishing, Toronto, Ontario, Canada.
- Wilkinson, L. 1990. SYSTAT: the system for statistics. SYSTAT Inc., Evanston, IL, USA.

12 GLOSSARY AND LIST OF ACRONYMS

12.1 GLOSSARY

Acute	Acute refers to a stimulus severe enough to rapidly induce an effect; in aquatic toxicity tests, an effect observed in 96 hours or less is typically considered acute. When referring to aquatic toxicology or human health, an acute effect is not always measured in terms of lethality.
Baseline	A surveyed condition which serves as a reference point to which later surveys are compared.
Benthic Invertebrates	Invertebrate organisms living on the bottom of lakes, ponds and streams. Examples of benthic invertebrates include the aquatic insects such as caddisfly larvae, which spend at least part of their life on or in bottom sediments. Many benthic invertebrates are major food sources for fish.
Biological Indicator (Bioindicator)	Any biological parameter used to indicate the response of individuals, populations or ecosystems to environmental stress. For example, growth is a biological indicator.
Biomonitoring	The use of living organisms as indicators of the quality and integrity of aquatic or terrestrial systems in which they reside.
Chronic	Defines a stimulus that lingers or continues for a relatively long period of time, often one-tenth of the life span or more. Chronic should be considered a relative term depending on the life span of the organism. The measurement of a chronic effect can be reduced growth, reduce reproduction, etc., in addition to lethality.
Community	Plant or animal species living in close association in a defined location (e.g., fish community of a lake).
Concentration	Quantifiable amount of a chemical in environmental medium, expressed as mass of a substance per unit volume (e.g., mg/L), or per unit sample mass (e.g., mg/g).
Conductivity	A measure of a water's capacity to conduct an electrical current. It is the reciprocal of resistance. This measurement provides an estimate of the total concentration of dissolved ions in the water.

Detection Limit (DL)	the lowest concentration at which individual measurement results for a specific analyte are statistically different from a blank (that may be zero) with a specified confidence level for a given method and representative matrix.
Discharge	In a stream or river, the volume of water that flows past a given point in a unit of time (i.e., m^3/s).
Diversity	The variety, distribution and abundance of different plant and animal communities and species within an area.
Ecological Indicator	Any ecological parameter used to indicate the response of individuals, populations or ecosystems to environmental stress.
Environmental Impact Assessment (EIA)	A review of the effects that a proposed development will have on the local and regional environment.
Fauna	A term referring to an association of animals living in a particular place or at a particular time.
GPS	Global Positioning System. This system is based on a constellation of satellites which orbit the earth every 24 hours. GPS provides exact position in standard geographic grid (e.g., UTM).
Lethal	Causing death by direct action.
m ³ /s	Cubic metres per second. The standard measure of water flow in rivers; i.e., the volume of water in cubic metres that passes a given point in one second.
Microtox®	A toxicity test that includes an assay of light production by a strain of luminescent bacteria (<i>Photobacterium phosphoreum</i>).
Oil sands	A sand deposit containing a heavy hydrocarbon (bitumen) in the intergranular pore space of sands and fine grained particles. Typical oil sands comprise approximately 10 wt% bitumen, 85% coarse sand (>44 μ m) and a fines (<44 μ m) fraction, consisting of silts and clays.
Organics	Chemical compounds, naturally occurring or otherwise, which contain carbon, with the exception of carbon dioxide (CO_2) and carbonates (e.g., CaCo ₃).

Polycyclic Aromatic Hydrocarbon. A chemical by-product of petroleum- related industry and combustion of organic materials. PAHs are composed of at least two fused benzene rings. Toxicity increases with molecular size and degree of alkylation.
Probable Effect Level. Concentration of a chemical in sediment above which adverse effects on an aquatic organism are likely.
Quality Assurance and Quality Control refers to a set of practices that ensure the quality of a product or a result. For example, "Good Laboratory Practice" is part of QA/QC in analytical laboratories and involves proper instrument calibration, meticulous glassware cleaning and an accurate sample

- Reach A comparatively short length of river, stream channel or shore. The length of the reach is defined by the purpose of the study.
- Receptor The person or organism subjected to exposure to chemicals or physical agents.
- Relative Abundance The proportional representation of a species in a sample or a community.

information system.

- Riffle Habitat Shallow rapids where the water flows swiftly over completely or partially submerged materials to produce surface agitation.
- Run Habitat Areas of swiftly flowing water, without surface waves, that approximates uniform flow and in which the slope of water surface is roughly parallel to the overall gradient of the stream reach.
- Sediments Solid fragments of inorganic or organic material that fall out of suspension in water, wastewater, or other liquid.
- Spawning Habitat A particular type of area where a fish species chooses to reproduce. Preferred habitat (substrate, water flow, temperature) varies from species to species.
- Species A group of organisms that actually or potentially interbreed and are reproductively isolated from all other such groups; a taxonomic grouping of genetically and morphologically similar individuals; the category below genus.
- Sport/Game Fish Large fish that are caught for food or sport (e.g., northern pike, trout).
- Stressor An agent, a condition, or another stimulus that causes stress to an organism.

PAH

PEL

QA/QC

Transect	A line drawn perpendicular to the flow in a channel along which measurements are taken.
Toxic	A substance, dose, or concentration that is harmful to a living organism.
Toxicity	The inherent potential or capacity of a material to cause adverse effects in a living organism.
Wetlands	Term for a broad group of wet habitats. Wetlands are transitional between terrestrial and aquatic systems, where the water table is usually at or near the surface or the land is covered by shallow water. Wetlands include features that are permanently wet, or intermittently water-covered such as swamps, marshes, bogs, muskeg, potholes, swales, glades, slashes and overflow land of river valleys.

12.2 LIST OF ACRONYMS

microgram/kilogram
micro Siemans/centimetre
Athabasca Chipewyan First Nation
Alberta Environment
Alberta Environmental Protection
Alberta Pacific Forest Industries Inc.
Analysis of covariance
Analysis of variance
Alberta Oil Sands Environmental Research Program
Alberta Research Council-Vegreville
Alberta Tribal Council
AXYS Analytical Services Ltd.
Canadian Council of Ministers of the Environment
Catch-per-unit-effort
Department of Fisheries and Oceans
Dissolved oxygen
Dissolved organic carbon
Downstream
Environmental Effects Monitoring

Golder Associates

EIA	Environmental Impact Assessment
ETL	Enviro-Test Laboratories
EUB	Alberta Energy and Utilities Board
GPS	Global Positioning System
IRC	Industry Relations Corporation
ISQG	Interim Freshwater Sediment Quality Guidelines
KIR	Key Indicator Resource
km	kilometre
m	metre
m ³ /s	cubic metres per second
MDL	Method detection limit
MFO	Mixed function oxygenase
mg/kg	milligram/kilogram
mg/L	milligram/litre
MSE	Mean Squared Error
NRBS	Northern Rivers Basins Program
NREI	Northern Rivers Ecosystem Initiative
РАН	Polycyclic aromatic hydrocarbons
PEL	Probable Effect Level
PERD	Environment Canada's Program on Energy Research and Development
QA/QC	Quality assurance/Quality control
RAMP	Regional Aquatics Monitoring Program
SR	Studentized Residuals
T.C.U.	True colour units
TDS	Total dissolved solids
TOR	Terms of Reference
TSS	Total suspended solids
U/S	Upstream
U.S. EPA	United States Environmental Protection Agency
UTM	Universal Transverse Mercator
WBEA	Wood Buffalo Environmental Association
Yr	Year

APPENDIX I

LABORATORY METHODS

Parameter	Units	Detection Limits	Analytical Methods ^(a)
Conventional Parameters	Onits	Linits	Methods
bicarbonate (HCO3)	mg/L	5	APHA 2320B
calcium	mg/L	0.5	APHA 3120 B
carbonate (CO3)	mg/L	5	APHA 2320 B
chloride	mg/L	1	APHA 4500
colour	T.C.U.	3	APHA 2120B
conductance	µS/cm	0.2	APHA 2510 B
dissolved organic carbon	mg/L	1	APHA 5310 B
hardness	mg/L	1	APHA 2340 B
magnesium	mg/L	0.1	APHA 3120 B
pH		0.1	APHA 4500-H
potassium	mg/L	0.1	APHA 3120 B
sodium	mg/L	1	APHA 3120 B
sulphate	mg/L	0.5	APHA 4110 B
sulphide	μg/L	3	AEP
total alkalinity	mg/L	5	APHA 2320 B
total dissolved solids	mg/L	10	APHA 2540 c
total organic carbon	mg/L	1	APHA 5310 B
total suspended solids	mg/L	3	APHA 2540-D
Nutrients			
nitrate + nitrite	mg/L	0.1	APHA 4500NO3H
nitrogen - ammonia	mg/L	0.05	APHA 4500NH3F
nitrogen - kjeldahl	mg/L	0.2	APHA 4500N-C
phosphorus, total	μg/L	2	APHA 4500-PBE
phosphorus, total dissolved	μg/L	2	APHA 4500-PBE
Biochemical Oxygen Demand			
biochemical oxygen demand	mg/L	2	APHA 5210 B
Organics			
naphthenic acids	mg/L	1	FTIR
total phenolics	μg/L	1	EPA 420.2
total recoverable hydrocarbons	mg/L	0.5	APHA 5520 F
Metals (Total)			
aluminum (Al)	μg/L	20	SW6010
antimony (Sb)	μg/L	0.8	SW 3015
arsenic (As)	μg/L	1	ICP-MS
barium (Ba)	μg/L	0.2	SW6010
beryllium (Be)	μg/L	1	SW6010
boron (B)	μg/L	4	SW6010
cadmium (Cd)	μg/L	0.2	SW6010
calcium (Ca)	μg/L	100	APHA 3120 B
chromium (Cr)	μg/L	0.8	SW6010
cobalt (Co)	μg/L	0.2	SW6010
copper (Cu)	μg/L	1	SW6010
iron (Fe)	μg/L	20	SW6010
lead (Pb)	μg/L μg/L	0.1	SW6010
lithium (Li)	μg/L μg/L	6	SW3015
magnesium (Mg)	μg/L	20	APHA 3120 B

Table I-1 Analytical Methods used by EnviroTest Labs when Analyzing RAMP Water Samples

Parameter	Units	Detection Limits	Analytical Methods ^(a)
manganese (Mn)	μg/L	0.2	SW6010
mercury (Hg)	μg/L	0.2	APHA 3112 B
molybdenum (Mo)	μg/L	0.1	SW6010
nickel (Ni)	μg/L	0.2	SW6010
potassium (K)	μg/L	20	APHA 3120 B
selenium (Se)	μg/L	0.8	SW 3015
silver (Ag)	μg/L	0.4	SW6010
sodium (Na)	μg/L	200	APHA 3120 B
strontium (Sr)	μg/L	0.2	SW6010
titanium (Ti)	μg/L	0.6	SW 3015
uranium (U)	μg/L	0.1	SW 3015
vanadium (V)	μg/L	0.2	SW6010
zinc (Zn)	μg/L	4	SW6010
Metals (Dissolved)			
aluminum (Al)	μg/L	10	APHA 3120 B
antimony (Sb)	μg/L	0.8	ICP-MS
arsenic (As)	μg/L	0.4	ICP-MS
barium (Ba)	μg/L	0.1	APHA 3120 B
beryllium (Be)	μg/L	0.5	APHA 3120 B
boron (B)	μg/L	2	APHA 3120 B
cadmium (Cd)	μg/L	0.1	APHA 3120 B
chromium (Cr)	μg/L	0.4	APHA 3120 B
cobalt (Co)	μg/L	0.1	APHA 3120 B
copper (Cu)	μg/L	0.6	APHA 3120 B
iron (Fe)	μg/L	10	APHA 3120 B
lead (Pb)	μg/L	0.1	APHA 3120 B
lithium (Li)	μg/L	3	APHA 3120 B
manganese (Mn)	μg/L	0.1	APHA 3120 B
mercury (Hg)	μg/L	0.01 - 0.1	ICP-MS
molybdenum (Mo)	μg/L	0.1	APHA 3120 B
nickel (Ni)	μg/L	0.1	APHA 3120 B
selenium (Se)	μg/L	0.4 - 0.8	ICP-MS
silver (Ag)	μg/L	0.2	APHA 3120 B
strontium (Sr)	μg/L	0.1	APHA 3120 B
titanium (Ti)	μg/L	0.3	APHA 3120 B
uranium (U)	μg/L	0.1	ICP
vanadium (V)	μg/L	0.1	APHA 3120 B
zinc (Zn)	μg/L	2	APHA 3120 B

(a) APHA = Protocols developed by the American Public Health Association.

EPA and SW = Protocols established by the United States Environmental Protection Agency.

AEP = Protocol developed by Alberta Environment Protection.

ICP = Inductively Coupled Plasma.

MS = Mass spectrometry.

FTIR = Fourier Transform Infrared Spectroscopy.

Table I-2 Analytical Methods used by EnviroTest Labs when Analyzing RAMP Sediment Samples

	Detection Analytical								
Parameter	Units	Limits	Methods ^(a)						
Conventional Parameters	<u> </u>	•							
particle size - % sand	%	1	gravimetric						
particle size - % silt	%	1	gravimetric						
particle size - % clay	%	1	gravimetric						
total inorganic carbon	% by wt	0.01	combustion/acid reaction						
total organic carbon	% by wt	0.01	combustion/acid reaction						
total carbon	% by wt	0.01	combustion/acid reaction						
General Organics									
total recoverable hydrocarbons	µg/g	100	APHA 5520 C						
Metals (Total)									
aluminum (Al)	µg/g	10	SW 3051/6010						
antimony (Sb)	µg/g	0.02	APHA 3114 C						
arsenic (As)	µg/g	0.05	APHA 3114 C						
barium (Ba)	µg/g	0.5	SW 3051/6010						
beryllium (Be)	µg/g	1	SW 3051/6010						
cadmium (Cd)	µg/g	0.5	SW 3051/6010						
calcium (Ca)	µg/g	100	SW 3051/6010						
chromium (Cr)	µg/g	0.5	SW 3051/6010						
cobalt (Co)	µg/g	1	SW 3051/6010						
copper (Cu)	µg/g	1	SW 3051/6010						
iron (Fe)	µg/g	1	SW 3051/6010						
lead (Pb)	µg/g	5	SW 3051/6010						
magnesium (Mg)	µg/g	10	SW 3051/6010						
manganese (Mn)	µg/g	0.1	SW 3051/6010						
mercury (Hg)	µg/g	0.04	APHA 3114 C						
molybdenum (Mo)	µg/g	1	SW 3051/6010						
nickel (Ni)	µg/g	2	SW 3051/6010						
potassium (K)	µg/g	20	SW 3051/6010						
selenium (Se)	µg/g	0.1	APHA 3114 C						
silver (Ag)	µg/g	1	SW 3051/6010						
sodium (Na)	µg/g	100	SW 3051/6010						
strontium (Sr)	µg/g	1	SW 3051/6010						
sulphur (S)	µg/g	100	SW 3051/6010						
titanium (Ti)	µg/g	5	SW 3051/6010						
vanadium (V)	µg/g	1	SW 3051/6010						
zinc (Zn)	µg/g	0.5	SW 3051/6010						

^(a) APHA = Protocols developed by the American Public Health Association.

SW = Protocols established by the United States Environmental Protection Agency.

Table I-3Analytical Methods used by HydroQual Labs when Analyzing RAMP
Water and Sediment Samples

Parameter	Analytical Methods
Water	
Microtox®	Toxicity testing using luminescent bacteria (<i>Vibrio fischeri</i>). 1992. Environment Canada. EPS 1/RM/24.
chlorophyll a	Spectrophotometric determination of chlorophyll. Standard methods for the examination of water and wastewater, 18th ed. 1992. American Public Health Association.
Selenastrum capricornutum	Growth inhibition test using the freshwater alga <i>Selenastrum capricornutum</i> . 1992. Environment Canada. EPS 1/RM/25. Amended November 1997.
<i>Ceriodaphnia dubia</i> (growth and survival)	Test of reproduction and survival using the Cladoceran <i>Ceriodaphnia dubia</i> . 1992. Environment Canada. EPS 1/RM/21. Amended November 1997.
fathead minnow (growth and survival)	Test of larval growth and survival using fathead minnow. 1992. Environment Canada. EPS 1/RM/22. Amended November 1997.
Sediments	
<i>Chironomus tentans</i> (growth and survival)	Test for survival and growth in sediment using the larvae of freshwater midges (<i>Chironomus tentans</i> or <i>Chironomus riparius</i>). 1997. Environment Canada. EPS 1/RM/32.
<i>Hyalella azteca</i> (growth and survival)	Test for survival and growth in sediment using the freshwater amphipod <i>Hyalella azteca</i> . 1997. Environment Canada. EPS 1/RM/33.
Lumbriculus variegatus (growth and survival)	Standard test methods for measuring the toxicity of sediment- associated contaminant with freshwater invertebrates. 1995. ASTM E 1706-98a.

SUMMARY OF THE ANALYTICAL PROTOCOL USED BY AXYS LABS TO ANALYZE FOR POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) IN RAMP SEDIMENT SAMPLES

Summary

Sediments were analyzed for a suite of polycyclic aromatic hydrocarbons (PAHs), including alkylated PAHs. All samples were spiked with an aliquot of surrogate standard solution containing perdeuterated analogues of acenaphthene, chrysene, naphthalene, 2-methylnaphthalene, perylene, phenanthrene, pyrene, dibenz(a,h)anthracene, benzo(g,h,i)perylene and benzo(a)pyrene prior to analysis. Sediment samples were extracted by elution through a chromatographic column. Each extract was cleaned up on silica gel prior to analysis of PAHs by high resolution gas chromatography with low resolution (quadrupole) mass spectrometric detection (HRGC/MS).

Extraction Methods

A sub-sample of homogenized sediment was dried overnight at 105°C to determine moisture content.

Homogenized sediment sample was dried by grinding with anhydrous sodium sulphate. The mixture was transferred to a glass chromatographic column containing methanol. An aliquot of surrogate standard solution was added and the column was eluted with dichloromethane. The eluate was backwashed by shaking with potassium hydroxide solution followed by solvent extracted distilled water. The extract was dried over anhydrous sodium sulphate and concentrated. Activated copper was added to the extract to remover sulphur. The extract was ready for chromatographic cleanup procedures.

Chromatographic Cleanup Procedures

The extract was loaded onto a silica gel column (5% deactivated) and eluted with pentane (F1, discarded) followed by dichloromethane (F2, retained). The F2 fraction was concentrated and an aliquot of recovery standard, containing perdeuterated analogues of benzo(b)fluoranthene, fluoranthene and acenaphthylene was added. The extract was transferred to an autosampler vial in preparation for GC/MS analysis.

GC/MS Analysis

Analysis of the extract for PAHs was carried out using a Finnigan INCOS 50 mass spectrometer equipped with a Varian 3400 gas chromatograph with CTC autosampler and a Prolab Envirolink data system for MS control and data acquisition. The mass spectrometer was operated at unit mass resolution, in the

EI mode (70 Ev), using Multiple Ion Detection (MID) to enhance sensitivity. At least two characteristic ions for each target analyte and surrogate standard were monitored. A Restek Rtx-5 capillary chromatography column (30 m, 0.25 mm i.d. x 0.25 mm film thickness), used for chromatographic separation, was coupled to the MS source. A splitless/split injection sequence was used.

Quantitation Procedures

Concentrations of PAHs were calculated using the internal standard (isotope dilution) method of quantitation, comparing the area of the quantitation ion to that of the corresponding deuterated standard and correcting for response factors. Response factors were determined daily using authentic PAHs. Quantification was carried out using HP EnviroQuant and Prolab MS Extend software.

Concentrations of analytes were corrected based on the percent recovery of surrogate standards. Concentrations were reported on a dry weight basis.

APPENDIX II

WATER QUALITY DATA

Table II-1. Water Quality in the Athabasca River

		Ne	ar the Em	barras Ri	ver (Wint	Athabasca River Delta (Summer)						
Parameter	Units		Near the Embarras River (Winter) Historical (1977-1996) ^(a)					Historical (1977-1987) ^(b)				
	Onits	1999	median	min	max	count	1999	median	min	max	count	
Field measured		1777	incutan	mm	шах	count	1777	meuran	mm	шах	count	
pH		8.2	7.4	6.6	7.9	9	8.2	7.7	7.3	8.7	5	
Specific Conductance	µS/cm	473	459	150	1500	14	255	240	13	3000	15	
•							255					
Temperature	°C	0.1	0.0	-0.3	0.4	21	-	17.8	9.0	21.2	21	
Dissolved Oxygen	mg/L	13.5	10.7	3.0	12.0	12	-	8.6	4.7	9.7	16	
Conventional Parameters and Major I		100	1.7.7	1.60	250		120	117	100	126		
Bicarbonate (HCO3)	mg/L	182	177	168	250	11	129	117	108	126	3	
Calcium	mg/L	47	42	38	106	31	31	28	25	34	20	
Carbonate (CO3)	mg/L	< 5	< 0.5	< 0.5	< 0.5	1	< 5	-	-	-	-	
Chloride	mg/L	38	32	22	150	32	6	6	5	17	20	
Colour	T.C.U.	18	15	< 5	32	24	40	30	15	60	9	
Conductance	µS/cm	518	445	350	1205	31	255	238	187	300	20	
Dissolved Organic Carbon	mg/L	5	154	120	30	24	120	8	2	32	14	
Hardness	mg/L	171	154	139	372	13	139	100	88	110	6	
Magnesium	mg/L	13	12	10	27	31	8	7	6	9	20	
pH Putters in the second		7.6	7.7	7.2	8.3	32	8.2	7.9	7.4	8.3	20	
Potassium	mg/L	1.7	1.5	0.1	7.1	30	0.8	1.0	0.8	1.4	17	
Sodium	mg/L	40	30	21	121	32	7	9	7	14	20	
Sulphate	mg/L	46	33	22	186	32	23	17	11	26	20	
Sulphide	mg/L	< 0.003	-	-	-	-	< 0.003	-	-	-	-	
Total Alkalinity	mg/L	149	144	125	242	32	105	93	79	119	21	
Total Dissolved Solids	mg/L	300	265	220	722	31	190	141	118	170	20	
Total Organic Carbon	mg/L	6	8	5	20	23	6	10	2	36	18	
Total Suspended Solids	mg/L	5	4	< 0.4	206	34	157	92	13	1374	23	
Nutrients and Chlorophyll a						-						
Nitrate + Nitrite	mg/L	0.3	0.2	0.2	0.6	3	< 0.1	-	-	-	-	
Nitrogen - Ammonia	mg/L	0.08	0.05	0.03	0.07	6	< 0.05	-	-	-	-	
Nitrogen - Kjeldahl	mg/L	0.5	0.6	0.4	1.2	17	0.7	0.6	0.3	1.0	12	
Phosphorus, Total	μg/L	34	32	21	410	29	103	89	26	930	24	
Phosphorus, Total Dissolved	μg/L	16	18	12	24	7	6	-	-	-	-	
Chlorophyll a	μg/L	0	0.3	0.2	0.4	7	7	1	<1	8	6	
Biochemical Oxygen Demand			0.6					-				
Biochemical Oxygen Demand	mg/L	< 2	0.6	< 0.1	2	9	<2	-	-	-	-	
Toxicity								-				
Microtox IC50 @ 15 min	%	> 91	-	-	-	-	> 91	-	-	-	-	
Microtox IC25 @ 15 min	%	> 91	-	-	-	-	> 91	-	-	-	-	
Organics								-				
Naphthenic acids	mg/L	< 1	-	-	-	-	<1	-	-	-	-	
Total Phenolics	μg/L	2	4	< 1	24	11	< 1	3	3	6	3	
Total Recoverable Hydrocarbons	mg/L	< 0.5	-	-	-	-	< 0.5	-	-	-	-	
Metals (Total)		200		10	100		1000	100				
Aluminum (Al)	μg/L	300	70	< 10	480	30		600	50	3400	15	
Antimony (Sb)	µg/L	< 0.8	-	-	-	-	< 0.8	-	-	-	-	
Arsenic (As)	µg/L	<1	0.4	0.3	0.6	11	2	1.4	0.6	1.5	3	
Barium (Ba)	µg/L	65	66	58	70	10	122	61	54	71	3	
Beryllium (Be)	µg/L	<1	< 1	<1	< 1	1	<1	-	-	-	-	
Boron (B)	μg/L	35	-	-	-	-	18	-	-	-	-	
Cadmium (Cd)	μg/L	< 0.2	0	< 1	2	10	< 0.2	< 1	<1	< 1	3	
Calcium (Ca)	μg/L	50100	-	-	-	-	34300	-	-	-	-	
Chromium (Cr)	μg/L	4		< 1	6	10	8	3	3	4	3	
Cobalt (Co)	μg/L	0.5	< 1	< 1	3	10	2	< 1	< 1	2	3	
Copper (Cu)	μg/L	2	1	< 1	3	10	5	3	3	4	3	
Iron (Fe)	μg/L	600	556	421	605	9	4560	-	-	-	-	
Lead (Pb)	μg/L	0.4	-	-	-	-	2.2	-	-	-	-	
Lithium (Li)	$\mu g/L$	13	-	-	-	-	10	-	-	-	-	
Magnesium (Mg)	$\mu g/L$	19020	-	-	-	-	9790	-	-	-	-	
Manganese (Mn)	$\mu g/L$	39	-	-	-	-	< 127	-	-	-	-	

Table II-1. Water Quality in the Athabasca River

Parameter		Near the Embarras River (Winter)						Athabasca River Delta (Summer)				
	Units		Historical (1977-1996) ^(a)					His	torical (1	977-1987	^(b)	
		1999	median	min	max	count	1999	median	min	max	count	
Mercury (Hg)	μg/L	< 0.2	< 0.1	< 0.1	0.8	32	< 0.2	< 0.1	< 0.1	0.3	20	
Molybdenum (Mo)	μg/L	1.8	-	-	-	-	1.1	-	-	-	-	
Nickel (Ni)	μg/L	4.2	-	-	-	-	6.3	-	-	-	-	
Potassium (K)	μg/L	2120	-	-	-	-	2350	-	-	-	-	
Selenium (Se)	μg/L	< 0.8	< 0.1	< 0.1	< 0.2	11	< 0.8	< 0.2	< 0.2	< 0.2	3	
Silver (Ag)	μg/L	< 0.4	-	-	-	-	< 0.4	-	-	-	-	
Sodium (Na)	μg/L	47800	-	-	-	-	7700	-	-	-	-	
Strontium (Sr)	μg/L	300	-	-	-	-	240	-	-	-	-	
Titanium (Ti)	μg/L	7	< 10	< 10	< 50	8	141	-	-	-	-	
Uranium (U)	μg/L	0.6	-	-	-	-	0.6	-	-	-	-	
Vanadium (V)	μg/L	2	< 2	< 2	< 2	1	17	-	-	-	-	
Zinc (Zn)	μg/L	18	4	< 1	12	11	17	9	4	13	3	
Metals (Dissolved)												
Aluminum (Al)	μg/L	100	-	-	-	-	< 10	-	-	-	-	
Antimony (Sb)	μg/L	0.8	-	-	-	-	< 0.8	-	-	-	-	
Arsenic (As)	μg/L	< 0.4	0.5	< 0.2	10	15	0.6	0.9	0.2	6.1	16	
Barium (Ba)	μg/L	63	-	-	-	-	52	-	-	-	-	
Beryllium (Be)	μg/L	< 0.5	< 1	< 1	< 1	9	< 0.5	< 1	< 1	< 1	3	
Boron (B)	μg/L	3	50	< 20	60	11	11	30	10	60	5	
Cadmium (Cd)	μg/L	0.3	-	-	-	-	< 0.1	-	-	-	-	
Chromium (Cr)	μg/L	< 0.4	< 3	< 1	5	13	< 0.4	< 3	< 3	6	10	
Cobalt (Co)	μg/L	0.2	-	-	-	-	< 0.1	-	-	-	-	
Copper (Cu)	μg/L	1.6	-	-	-	-	1.5	-	-	-	-	
Iron (Fe)	μg/L	130	-	-	-	-	150	-	-	-	-	
Lead (Pb)	μg/L	0.6	-	-	-	-	< 0.1	-	-	-	-	
Lithium (Li)	μg/L	9	-	-	-	-	4	-	-	-	-	
Manganese (Mn)	μg/L	32.6	-	-	-	-	< 10.3	-	-	-	-	
Mercury (Hg)	μg/L	< 0.1	-	-	-	-	< 0.1	-	-	-	-	
Molybdenum (Mo)	μg/L	1.9	-	-	-	-	0.1	-	-	-	-	
Nickel (Ni)	μg/L	2.4	-	-	-	-	1.1	-	-	-	-	
Selenium (Se)	μg/L	< 0.4	< 0.2	< 0.2	0.3	8	< 0.4	< 0.2	< 0.2	0.8	11	
Silver (Ag)	μg/L	< 0.2	-	-	-	-	< 0.2	-	-	-	-	
Strontium (Sr)	μg/L	322	-	-	-	-	191	-	-	-	-	
Titanium (Ti)	μg/L	0.8	-	-	-	-	1.8	-	-	-	-	
Uranium (U)	μg/L	0.6	-	-	-	-	0.5	-	-	-	-	
Vanadium (V)	μg/L	0.2	-	-	-	-	< 0.1	-	-	-	-	
Zinc (Zn)	μg/L	12	-	-	-	-	3	-	-	-	-	

^(a) Based on information from NAQUADAT stations AB07DD0004/006/007/008.

^(b) Based on information from NAQUADAT stations AB07DD0160/170/220/230/240.

						Steepbank	River (V	Vinter)	
Parameter	Units	McLe	an Creek	(Fall)		His	torical (1	989-1997)	(c)
		1999	1998 ^(a)	1995 ^(b)	1999	median	min	max	n
Field measured									
рН		7.1	8.3	8.0	7.7	-	7.7	8.4	2
Specific Conductance	µS/cm	658	650	307	572	-	413	548	2
Temperature	°C	10.8	4	-	0.1	0.3	0.2	0.5	4
Dissolved Oxygen	mg/L	13.4	8.5	-	10.5	13.3	12.7	13.8	4
Conventional Parameters and Major Ions	0								
Bicarbonate (HCO3)	mg/L	305	238	162	417	-	371	378	2
Calcium	mg/L	60	56	39	73	62	61	64	3
Carbonate (CO3)	mg/L	< 5	< 5	< 0.5	< 5	< 0.5	< 0.5	< 5	3
Chloride	mg/L	165	73	11	6	7	7	8	5
Colour	T.C.U.	50	80	-	20	35	20	95	5
Conductance	$\mu S/cm$	1000	664	307	689	595	588	610	3
Dissolved Organic Carbon	mg/L	14	13	21	8	11	9	13	5
Hardness	mg/L	219	199	142	280	244	229	265	4
Magnesium	mg/L	17	15	11	24	20	19	22	3
рН		8.3	8.1	8.0	7.6	7.9	7.8	8.2	4
Potassium	mg/L	2	2	1	3	2	2	2	4
Sodium	mg/L	140	68	14	50	42	40	46	5
Sulphate	mg/L	56	38	11	17	12	10	14	5
Sulphide	μg/L	4	<2	-	< 3	-	< 2	< 5	2
Total Alkalinity	mg/L	251	195	133	342	314	304	330	4
Total Dissolved Solids	mg/L	620	440	167	390	-	350	357	2
Total Organic Carbon	mg/L	15	16	-	9	11	11	13	3
Total Suspended Solids	mg/L	5	13	1	< 3	3	< 0.4	4	5
Nutrients and Chlorophyll <i>a</i>	/Т	. 1	0.05	0.004	0.2	0.25	0.22	0.26	2
Nitrate + Nitrite	mg/L	<1	0.05	0.004	0.2	0.35	0.33	0.36	3
Nitrogen - Ammonia	mg/L	< 0.05	< 0.05	< 0.01	0.06	0.04	0.03	0.06	5
Nitrogen - Kjeldahl Phosphorus, Total	mg/L μg/L	0.4	0.7	- 42	10	0.6	41	50	2
Phosphorus, Total Dissolved	μg/L μg/L	5	6	42	5	-	41	< 20	2
Chlorophyll <i>a</i>	μg/L μg/L	5	2	-	0	0.2	0	< 20	1
Biochemical Oxygen Demand	μg/L		2		0	0.2			1
Biochemical Oxygen Demand	mg/L	4	<2	-	< 2	0.8	0.2	1	5
Toxicity									
Microtox IC50 @ 15 min	%	> 91	> 91	> 100	> 91	> 91	-	-	1
Microtox IC25 @ 15 min	%	> 91	> 91	> 100	> 91	> 91	-	-	1
Algal Growth Inhibition Test (72 h) - IC25	%	-	-	-	>100	-	-	-	-
Algal Growth Inhibition Test (72 h) - IC50	%	-	-	-	> 100	-	-	-	-
Algal Growth Inhibition Test (72 h) - LOE	%	-	-	-	> 100	-	-	-	-
Algal Growth Inhibition Test (72 h) - NOE	%	-	-	-	100	-	-	-	-
Ceriodaphnia 7 d Mortality Test - LC25	%	-	-	-	>100	-	-	-	-
Ceriodaphnia 7 d Mortality Test - LC50	%	-	-	-	>100	-	-	-	-
Ceriodaphnia 7 d Mortality Test - LOEC	%	-	-	-	>100	-	-	-	-
Ceriodaphnia 7 d Mortality Test - NOEC	%	-	-	-	100	-	-	-	-
Ceriodaphnia 7 d Reproduction Test - IC25	%	-	-	-	> 100	-	-	-	-
Ceriodaphnia 7 d Reproduction Test - IC50	%	-	-	-	> 100	-	-	-	-
Ceriodaphnia 7 d Reproduction Test - LOE	%	-	-	-	> 100	-	-	-	-
Ceriodaphnia 7 d Reproduction Test - NOE	%	-	-	-	100	-	-	-	-
Fathead Minnow 7d Growth - IC25	%	-	-	-	> 100	-	-	-	-
Fathead Minnow 7d Growth - IC50	%	-	-	-	> 100	-	-	-	-
Fathead Minnow 7d Growth - LOEC	%	-	-	-	> 100	-	-	-	-
Fathead Minnow 7d Growth - NOEC Fathead Minnow 7d Mortality Test - LC25	%	-	-	-	100	-	-	-	-
-	%	-	-	-	> 100	-	-	-	-
Fathead Minnow 7d Mortality Test - LC50	%	-	-	-	> 100	-	-	-	-
Fathead Minnow 7d Mortality Test - LOEC Fathead Minnow 7d Mortality Test - NOEC	%	-	-	-	> 100	-	-	-	-
Organics	70	-	-	-	100	-	-	-	-
Naphthenic acids	mg/I	2	<1	<1	<1	2			1
Total Phenolics	mg/L μg/L	<1	< 1	<1	<1	3	<1	- 5	4
Total Recoverable Hydrocarbons	μg/L mg/L	< 0.5	< 0.5	<1	< 0.5	<1	< 1	5	4
Metals (Total)	шg/L	< 0.5	< 0.5	< 1	< 0.3	<1	-	-	1
Aluminum (Al)	μg/L	330	560	60	90	40	13	131	4

						Steepbank	k River (W	(inter)	
Parameter	Units	McLe	an Creek	(Fall)			torical (1) ^(c)
i urumeter	Cints	1999	1998 ^(a)	1995 ^(b)	1999	median	min	max	, n
Antimony (Sb)	μg/L	< 0.8	< 0.8	< 0.2	1.1	< 0.4	-	-	1
Arsenic (As)	μg/L μg/L	<1	<1	0.8	<1	0.3	< 0.2	0.6	4
Barium (Ba)	μg/L	55	39	20	103	75	70	80	4
Beryllium (Be)	μg/L μg/L	<1	<1	<1	<1	15	<1	<1	2
Boron (B)	μg/L μg/L	201	74	80	343		240	284	2
Cadmium (Cd)	μg/L μg/L	< 0.2	< 0.2	3	< 0.2	< 0.2	< 0.2	201	3
Calcium (Ca)	μg/L μg/L	60700	54900	-	69200	63200	< 0.2	-	1
Chromium (Cr)	μg/L μg/L	1.6	1.1	<2	3.2	05200	< 0.4	5	2
Cobalt (Co)	μg/L μg/L	0.4	0.5	< 3	< 0.2		< 0.5	1	2
Copper (Cu)	μg/L μg/L	4	1.5	< 5	2		2	2	2
Iron (Fe)	μg/L μg/L	660	920	410	170	905	610	1110	4
Lead (Pb)	μg/L μg/L	0.2	1	< 20	0.3	705	< 0.3	3.3	2
Lithium (Li)		32	20	20	31		23	27	2
Magnesium (Mg)	μg/L μg/L	19900	14200	-	23220	20800	23	21	1
Maganese (Mn)	μg/L μg/L	19900 64	68	20	23220	20800	- 16	21	2
Mercury (Hg)	μg/L μg/L	< 0.2	< 0.2	< 0.05	< 0.2	< 0.15	< 0.05	< 50	4
Molybdenum (Mo)	μg/L μg/L	< 0.2	< 0.2	< 0.03	< 0.2	< 0.15	< 0.03	< 30	2
Nickel (Ni)	μg/L μg/L	2.5	4.5	<5	3.7	-	< 0.5	1.5	2
Potassium (K)	μg/L μg/L	2430	1840	< 5	1830	2010	< 0.5	1.5	1
Selenium (Se)	10	< 0.8	< 0.8	< 0.2	< 0.8	< 0.2	< 0.1	< 0.4	4
	μg/L					< 0.2			2
Silver (Ag)	μg/L	< 0.4 188000	< 0.4 66350	< 2	< 0.4	45600	< 0.1	<1	1
Sodium (Na)	μg/L		193	-		43600	258	-	2
Strontium (Sr) Titanium (Ti)	μg/L	266	195	96 7	316	- 5	238	291	1
. ,	μg/L		0.2	/		0.2	-	-	1
Uranium (U) Vanadium (V)	μg/L	0.4	1.4	<2	0.2	<2	- 0.5	<2	3
Zinc (Zn)	μg/L	0.9	1.4	< 2	< 0.2	< 2	12	< 2	3
Metals (Dissolved)	$\mu g/L$	17	10	24	10	07	12	100	3
Aluminum (Al)	u a/I	10	45		20	5.8	-		1
Antimony (Sb)	μg/L	< 0.8	0.8	-	20	< 0.4	-	-	1
	μg/L	< 0.8		-	< 0.4	< 0.4	-	-	1
Arsenic (As)	μg/L	44	< 0.4	-	< 0.4	< 0.4	-	-	1
Barium (Ba)	µg/L			-		70	-	-	2
Beryllium (Be)	μg/L	< 0.5	< 0.5 76	-	< 0.5	-	< 0.5	<1	1
Boron (B)	μg/L	150		-		265	-	-	1
Cadmium (Cd) Chromium (Cr)	μg/L	< 0.1	< 0.1 < 0.4	-	< 0.1	< 0.1 < 0.4	-	-	1
	μg/L	0.3	< 0.4	-	0.2	0.1	-	-	1
Cobalt (Co) Copper (Cu)	μg/L	3.0	0.4	-	1.0	0.1	-	-	1
	μg/L	250	460	-	200	< 10	-	-	1
Iron (Fe) Lead (Pb)	μg/L	< 0.1	460	-	0.2	< 10	-	-	1
· /	μg/L		0.5	-			-	-	
Lithium (Li) Manganese (Mn)	μg/L	34 22	- 64	-	34	24 0.3	-	-	1
Manganese (Mn) Mercury (Hg)	μg/L μg/L	< 0.1	< 0.1	-	< 0.1	< 0.2	-	-	1
Molybdenum (Mo)		< 0.1	< 0.1	-	< 0.1	< 0.2	-	-	1
Nickel (Ni)	μg/L μg/L	2.7	3.6	-	2.4	0.51	-	-	1
Selenium (Se)	μg/L μg/L	< 0.4	< 0.4	-	< 0.4	< 0.4	-	-	1
Silver (Ag)		< 0.4	< 0.4	-	< 0.4	< 0.4	-	-	1
Strontium (Sr)	μg/L μg/I	263	< 0.2	-	< 0.2	239	-	-	1
Titanium (Ti)	μg/L μg/I	203	1.8	-	1.5	0.4	-	-	1
Uranium (U)	μg/L μg/L	0.9	0.2	-	0.2	0.4	-	-	1
Vanadium (V)	μg/L μg/L	0.5	< 0.1	-	< 0.1	< 0.1	-	-	1
Zinc (Zn)	μg/L μg/L	0.9	< 0.1	-	< 0.1		-	-	1

^(a) Based on unpublished data from Suncor Energy Inc.

^(b) Based on information from Golder (1996a).

^(c) Based on information from Golder (1998a) and NAQUADAT station AB07DA0260.

Table II-3. Water Quality in Shipyard Lake

				Shipyar	d Lake		
Parameter	Units	Spri	ng		Summer		Fall
		1999	1995 ^(a)	1999	1998 ^(b)	1995 ^(a)	1999
Field measured	II					I	
pН		8.0	6.9	8.9	7.5	7.4	8.7
Specific Conductance	µS/cm	314	241	264	329	274	333
Temperature	°C	10.9	-	22.8	_	-	2.2
Dissolved Oxygen	mg/L	7.8	-	14.0	-	-	8.2
Conventional Parameters and Ma	•						
Bicarbonate (HCO3)	mg/L	186	133	131	196	165	201
Calcium	mg/L	41	33	32	44	41	42
Carbonate (CO3)	mg/L	< 5	< 5	16	< 5	< 5	< 5
Chloride	mg/L	9.0	5.8	8.0	8.0	4.8	11
Colour	T.C.U.	30	-	40	80	-	30
Conductance	µS/cm	334	241	275	329	274	358
Dissolved Organic Carbon	mg/L	16	-	16	16	-	17
Hardness	mg/L	142	112	120	149	135	152
Magnesium	mg/L	10	7	10	10	8	11
pH		8.0	6.9	8.9	7.5	7.4	8.1
Potassium	mg/L	1.5	-	0.5	0.8	0.8	1
Sodium	mg/L	12	-	13	12	9	16
Sulphate	mg/L	5	4	4	3	2	6
Sulphide	μg/L	3	< 5	< 3	< 2	< 5	5
Total Alkalinity	mg/L	152	109	134	161	135	165
Total Dissolved Solids	mg/L	220	-	220	386	147	240
Total Organic Carbon	mg/L	18	18	18	22	24	19
Total Suspended Solids	mg/L	< 3	155	4	11	180	5
Nutrients and Chlorophyll a	U						
Nitrate + Nitrite	mg/L	< 0.1	0.01	0.1	< 0.05	0.02	< 0.1
Nitrogen - Ammonia	mg/L	< 0.05	< 0.01	< 0.05	0.06	0.09	< 0.05
Nitrogen - Kjeldahl	mg/L	0.9	0.7	0.8	0.9	0.5	0.8
Phosphorus, Total	μg/L	19	31	12	29	34	17
Phosphorus, Total Dissolved	μg/L	14	19	4	24	15	7
Chlorophyll <i>a</i>	μg/L	-	-	3	6	-	-
Biochemical Oxygen Demand	10						
Biochemical Oxygen Demand	mg/L	3	-	3	2	-	< 2
Toxicity	U						
Microtox IC50 @ 15 min	%	> 91	-	> 91	>91	> 100	> 91
Microtox IC25 @ 15 min	%	> 91	-	> 91	>91	> 100	> 91
Organics							
Naphthenic acids	mg/L	< 1	-	< 1	< 1	< 1	< 1
Total Phenolics	μg/L	7	-	2	3	-	6
Total Recoverable Hydrocarbons	mg/L	< 0.5	-	< 0.5	< 0.5	< 1	< 0.5
Metals (Total)							
Aluminum (Al)	µg/L	30	20	70	30	50	30
Antimony (Sb)	μg/L	< 0.8	-	< 0.8	< 0.8	0.2	< 0.8
Arsenic (As)	μg/L	< 1	0.2	< 1	< 1	< 1	< 1
Barium (Ba)	μg/L	34	20	22	35	30	27
Beryllium (Be)	μg/L	< 1	< 1	< 1	< 1	< 1	< 1
Boron (B)	μg/L	< 4	40	34	42	30	27
Cadmium (Cd)	μg/L	< 0.2	< 0.2	< 0.2	< 0.2	< 3	< 0.2
Calcium (Ca)	μg/L	36600	35100	32200	49600	-	43200
Chromium (Cr)	μg/L	< 0.8	7.0	< 0.8	< 0.8	9.0	1.5

Table II-3. Water Quality in Shipyard Lake

				Shipyar	d Lake		
Parameter	Units	Spr	ing		Summer		Fall
	0 1110	1999	1995 ^(a)	1999	1998 ^(b)	1995 ^(a)	1999
Cobalt (Co)	μg/L	< 0.2	0.6	< 0.2	< 0.2	< 3	< 0.2
Copper (Cu)	μg/L	< 1	1	1	< 1	-	< 1
Iron (Fe)	μg/L	250	1150	220	2090	2650	270
Lead (Pb)	μg/L	0.4	1.0	0.1	0.3	< 20	< 0.1
Lithium (Li)	μg/L	9	5	10	9	7	11
Magnesium (Mg)	μg/L	8040	7740	9830	9550	-	11300
Manganese (Mn)	μg/L	24	46	< 127	98	180	15
Mercury (Hg)	μg/L	< 0.2	< 50	< 0.2	< 0.2	< 50	< 0.2
Molybdenum (Mo)	μg/L	0.4	< 3	0.1	< 0.1	< 3	0.2
Nickel (Ni)	μg/L	1	11	1	1	10	2
Potassium (K)	μg/L	1200	1780	530	800	-	1140
Selenium (Se)	μg/L	< 0.8	< 0.2	< 0.8	< 0.8	< 1	< 0.8
Silver (Ag)	μg/L	< 0.4	1.1	< 0.4	< 0.4	< 2	< 0.4
Sodium (Na)	μg/L	11600	8400	11500	14500	-	14200
Strontium (Sr)	μg/L	128	83	113	132	116	133
Titanium (Ti)	μg/L	1	< 3	< 0.6	< 0.6	20	1
Uranium (U)	μg/L	< 0.1	< 0.4	< 0.1	< 0.1	-	< 0.1
Vanadium (V)	μg/L	< 0.2	< 2	0.2	< 0.2	< 2	0.2
Zinc (Zn)	μg/L	7	17	12	< 4	13	< 4
Metals (Dissolved)	1						
Aluminum (Al)	μg/L	10	-	10	60	-	< 10
Antimony (Sb)	μg/L	< 0.8	-	< 0.8	< 0.8	-	< 0.8
Arsenic (As)	μg/L	< 0.4	-	1.3	0.5	-	< 0.4
Barium (Ba)	μg/L	31	-	17	33	-	28
Beryllium (Be)	μg/L	< 0.5	-	< 0.5	< 0.5	-	< 0.5
Boron (B)	μg/L	3	-	35	33	-	26
Cadmium (Cd)	μg/L	< 0.1	-	< 0.1	0.1	-	< 0.1
Chromium (Cr)	μg/L	0.4	-	< 0.4	< 0.4	-	0.8
Cobalt (Co)	μg/L	0.1	-	0.1	< 0.1	-	0.1
Copper (Cu)	μg/L	0.9	-	1.6	0.6	-	0.9
Iron (Fe)	μg/L	140	-	130	1480	-	220
Lead (Pb)	μg/L	0.2	-	0.2	0.1	-	< 0.1
Lithium (Li)	μg/L	8	-	10	7	-	11
Manganese (Mn)	μg/L	15	-	1	102	-	3
Mercury (Hg)	μg/L	0.1	-	0.2	< 0.1	-	0.03
Molybdenum (Mo)	μg/L	0.4	-	< 0.9	< 0.1	-	0.2
Nickel (Ni)	µg/L	0.7	-	0.5	0.3	-	1.8
Selenium (Se)	µg/L	< 0.4	-	< 0.4	< 0.4	-	< 0.4
Silver (Ag)	µg/L	< 0.2	-	< 0.2	< 0.2	-	< 0.2
Strontium (Sr)	μg/L	124	-	112	131	-	135
Titanium (Ti)	μg/L	0.9	-	< 0.3	< 0.3	-	0.4
Uranium (U)	μg/L	< 0.1	-	< 0.1	< 0.1	-	0.3
Vanadium (V)	μg/L	0.2	-	0.2	< 0.1	-	0.1
Zinc (Zn)	μg/L	8	-	< 2	< 2	-	3

^(a) Based on information from Golder (1996a).

^(b) Based on information from Golder (1999a).

Table II-4. Water Quality in the Muskeg River: Sample Stations MUR-1 and MUR-4

			River Mou	Unstr	eam of Shell	ev Creek (N	/UR-4) (Fa	all)			
Parameter	Units			torical (197	/ \ /)	Opstr		torical (198)
r ai ametei	Omts	1999		min			1999	median	min		
Field measured		1999	median	min	max	n	1999	median	min	max	n
pH		8.0	8.4	7.8	9.2	3		7.8	7.5	8.0	- 1
*	u C/am	655	0.4	177	9.2 610		-	326	274	380	4
Specific Conductance	μS/cm		-			2	-				4
Temperature	°C	3.9	-	1.5	12.0	2	-	4.0	1.5	6.0	4
Dissolved Oxygen	mg/L	12.3	-	9.5	12.5	2	-	11.4	9.6	12.2	4
Conventional Parameters and Majo		1					1				
Bicarbonate (HCO3)	mg/L	341	183	123	321	6	311	202	179	226	4
Calcium	mg/L	108	42	26	111	9	72	43	38	48	4
Carbonate (CO3)	mg/L	-	< 0.5	0	< 5	6	< 5	-	< 0.5	< 0.5	2
Chloride	mg/L	5.8	2.7	1.4	18.1	9	4.0	2.6	1.6	3.7	4
Colour	T.C.U.	35	50	30	120	3	60	150	100	200	4
Conductance	µS/cm	666	284	193	627	9	491	-	-	-	-
Dissolved Organic Carbon	mg/L	16	24	11	27	7	15	-	-	-	-
Hardness	mg/L	343	148	96	353	9	244	153	137	170	4
Magnesium	mg/L	19	9	7	18	9	16	11	10	12	4
рН		8.2	7.9	7.6	8.3	9	7.8	-	-	-	-
Potassium	mg/L	1.9	1.0	0.5	1.5	9	1.3	0.9	0.8	1.0	4
Sodium	mg/L	13	11	8	27	9	8	11	10	12	4
Sulphate	mg/L	91	4	1	95	9	5	3	2	4	4
Sulphide	μg/L	< 3	< 3	< 2	< 5	3	< 3	-	-	-	-
Total Alkalinity	mg/L	280	150	101	264	9	255	166	147	185	4
Total Dissolved Solids	mg/L	405	177	120	482	8	350	175	151	200	4
Total Organic Carbon	mg/L	16	24	12	29	5	18	24	22	27	4
Total Suspended Solids	mg/L	3	4	1	70	8	8	5	4	7	4
Nutrients											
Nitrate + Nitrite	mg/L	< 0.1	< 0.02	< 0.002	0.1	7	< 0.1	0.02	0.01	0.03	4
Nitrogen - Ammonia	mg/L	< 0.05	0.06	0.04	0.09	4	0.08	0.05	0.04	0.07	4
Nitrogen - Kjeldahl	mg/L	0.6	0.65	0.55	0.7	5	0.8	0.89	0.84	1.34	4
Nitrogen - Total	mg/L	0.6					0.8				
Phosphorus, Total	μg/L	8	34	8	600	8	31	34.5	32	38	4
Phosphorus, Total Dissolved	μg/L	5	14	8	16	3	7	-	-	-	-
Biochemical Oxygen Demand	10										
Biochemical Oxygen Demand	mg/L	< 2	1	< 0.1	4	4	< 2	2	1	2	4
Toxicity											
Microtox IC50 @ 15 min	%	> 91	> 91	> 91	> 100	4	> 91	-	-	-	-
Microtox IC25 @ 15 min	%	> 91	> 91	> 91	> 100	4	> 91	-	-	-	-
Organics								•			
Naphthenic acids	mg/L	1	< 1	< 1	< 1	4	< 1	-	-	-	-
Total Phenolics	μg/L	2	< 1	< 1	2	5	3	-	-	-	_
Total Recoverable Hydrocarbons	mg/L	< 0.5	< 0.8	< 0.5	< 1	4	< 0.5	0.3	0.1	0.5	4
Metals (Total)	0								I		
Aluminum (Al)	μg/L	290	90	30	1200	7	40	15	< 10	20	4
Antimony (Sb)	μg/L	< 0.8	< 0.5	< 0.2	< 0.8	3	< 0.8	-	-	-	
Arsenic (As)	μg/L	< 1	1.0	< 0.2	14	6	< 1	0.4	0.2	0.5	4
Barium (Ba)	μg/L	82	30	20	91.7	5	69		-	-	
Beryllium (Be)	μg/L μg/L	< 1	< 1	< 1	3	5	< 1	_	_	_	
Boron (B)	μg/L μg/L	41	34	28	160	5	34	45	30	70	4
Cadmium (Cd)	μg/L μg/L	< 0.2	< 1.6	< 0.2	4	6	< 0.2	<1	< 1	< 1	-+
Calcium (Ca)	μg/L μg/L	104000	< 1.0 _	36300	114000	2	73100	<u> </u>	<u></u>	<u> </u>	
Chromium (Cr)	μg/L μg/L	< 0.8	4.5	0.7	8	6	< 0.8	< 1	< 1	12	
Cobalt (Co)	μg/L μg/L	< 0.8	2.6	0.7	6	6	< 0.8	< 1 <	< 1	12	+
Copper (Cu)			1.3	< 1	4		< 0.2	< 1	< 1	< 1	- /
copper (Cu)	μg/L	2	1.3	< 1	4	6	3	< 1	< 1	< 1	4

			River Mou	th (MUR-	1) (Fall)		Upstr	eam of Shell	ey Creek (N	AUR-4) (Fa	all)
Parameter	Units		His	torical (19'	72 - 1998) ^(a))		His	torical (198	5-1988) ^(b)	
		1999	median	min	max	n	1999	median	min	max	n
Iron (Fe)	µg/L	420	960	490	1810	6	1460	1070	1030	1110	2
Lead (Pb)	μg/L	< 0.1	1.2	0.3	< 20	5	< 0.1	< 2	< 2	< 2	4
Lithium (Li)	μg/L	12	8	6	10	5	12	-	-	-	
Magnesium (Mg)	μg/L	19000	-	7880	18200	2	18300	-	-	-	
Manganese (Mn)	μg/L	16	48	33	115	5	77	63	53	70	4
Mercury (Hg)	μg/L	< 0.2	< 0.3	< 0.1	< 50	7	< 0.2	< 0.08	< 0.05	< 0.1	2
Molybdenum (Mo)	μg/L	< 0.1	< 3	< 0.1	5	5	< 0.1	-	-	-	
Nickel (Ni)	μg/L	3	5	< 0.5	15	5	1.9	< 1	< 1	< 1	4
Potassium (K)	μg/L	1820	-	1380	1710	2	1500	-	-	-	
Selenium (Se)	μg/L	< 0.8	< 0.3	< 0.2	< 0.8	4	< 0.8	0.5	< 0.2	0.8	
Silver (Ag)	μg/L	< 0.4	< 0.4	< 0.1	3	5	< 0.4	-	-	-	
Sodium (Na)	μg/L	20800	-	8000	8600	2	11000	-	-	-	
Strontium (Sr)	μg/L	225	97	72	196	5	165	_	-	_	
Titanium (Ti)	μg/L	1.5	6	2	17	4	0.7	-	-	-	
Uranium (U)	μg/L	0.3	< 250	< 0.1	< 500	4	< 0.1	_	-	-	
Vanadium (V)	μg/L	< 0.2	2	0.2	3	5	< 0.2	< 1	< 1	< 1	
Zinc (Zn)	μg/L	4	16	8	33	5	10	2	<1	4	
Metals (Dissolved)	F8 2		10	Ű	00	U	10	2			
Aluminum (Al)	μg/L	10	_	27	90	2	< 10	-	-		
Antimony (Sb)	μg/L μg/L	< 0.8	< 0.8	27	,,,	1	< 0.8				
Arsenic (As)	μg/L μg/L	< 0.4	< 0.4	< 0.4	< 1	3	< 0.4				
Barium (Ba)	μg/L μg/L	79	F.0 /	24	93	2	57				
Beryllium (Be)	μg/L μg/L	< 0.5		< 0.5	< 0.5	2	< 0.5		-	-	
Boron (B)	μg/L μg/L	57	29	10	160	4	40	-	-	-	
Cadmium (Cd)	μg/L μg/L	< 0.1	29	< 0.1	< 0.1	2	< 0.1	-	-	-	
Chromium (Cr)	μg/L μg/L	< 0.1	< 1.7	< 0.1	4	4	< 0.1	-	-	-	
Cobalt (Co)	10	< 0.4	< 1.7	< 0.4	0.2	2	< 0.4	-	-	-	
	μg/L α		-					-	-	-	
Copper (Cu)	μg/L α	1.6	-	1.1	1.3	2	< 0.6	-	-	-	
Iron (Fe)	μg/L	340	-	250	440	2	290	-	-	-	
Lead (Pb)	µg/L	< 0.1	-	0.3	0.9	2	< 0.1	-	-	-	
Lithium (Li)	μg/L	10	-		9	2	19	-	-	-	
Manganese (Mn)	μg/L	13	-	30	35	2	76	-	-	-	
Mercury (Hg)	μg/L ~	< 0.01	-	< 0.1	0.2	2	< 0.01	-	-	-	
Molybdenum (Mo)	μg/L ~	0.1	-	0.08	0.2	2	< 0.1	-	-	-	
Nickel (Ni)	μg/L	2.8	-	0.4	4.4	2	1.0	-	-	-	
Selenium (Se)	μg/L ~	< 0.4	< 0.4	< 0.4	< 0.5	3	< 0.4	-	-	-	
Silver (Ag)	μg/L	< 0.2	-	< 0.2	< 0.2	2	< 0.2	-	-	-	
Strontium (Sr)	μg/L	234	-	74	193	2	171	-	-	-	
Titanium (Ti)	μg/L	1	-	0.6	1.5	2	1.2	-	-	-	
Uranium (U)	μg/L	0.2	0.5	-	-	1	< 0.1	-	-	-	
Vanadium (V)	μg/L	0.3	< 0.1	-	-	1	0.2	-	-	-	
Zinc (Zn)	μg/L	< 2	4	-	-	1	6		-	-	

^(a) Based on information from Golder (1996a, 1998b, 1999a), R.L.&L. (1982) and NAQUADAT stations AB07DA0620/630.

^(b) Based on information from R.L.&L. (1989).

				Winter					Spring				Sı	ımmer					Fall		
Parameter	Units		His	storical (19	74 - 1998)			His	storical (19	77 - 1998)			Hist	orical (1970	6 - 1998)			His	storical (19	76 - 1985)	
		1999	median	min	max	n	1999	median	min	max	n	1999	median	min	max	n	1999	median	min	max	n
Field measured																					
pH		7.8	7.7	-	-	1	8.4	-	7.8	7.8	2	7.9	-	7.7	8.1	2	8.1	-	7.6	8.0	2
Specific Conductance	µS/cm	660	470	-	-	1	387	196	-	-	1	375	316	-	-	1	635	269	-	-	1
Temperature	°C	0.2	0.0	0.0	0.5	18	9.0	8.2	0.0	13.5	10	21.8	16.0	13.0	21.0	20	3.3	7.3	0.0	12.0	14
Dissolved Oxygen	mg/L	9.1	6.8	1.8	10.4	8	10.0	9.5	6.2	11.8	7	8.5	9.0	5.2	11.8	21	8.4	9.4	5.0	13.6	14
Conventional Parameters and Major Ions																					
Bicarbonate (HCO3)	mg/L	344	-	313	350	2	223	123	93	134	3	236	-	201	207	2	343	-	172	310	2
Calcium	mg/L	111	72	18	90	25	57	27	16	66	12	56	46	28	67	23	104	37	27	81	17
Carbonate (CO3)	mg/L	< 5	< 5	-	-	1	< 5	< 0.5	0	< 5	3	< 5	-	0	< 0.5	2	< 5	0	-	-	1
Chloride	mg/L	2.0	5.6	0.5	13.0	27	6.0	1.9	1.6	5.5	12	2.0	4.2	1.6	14.4	23	5.0	2.6	1.7	29.7	17
Colour	T.C.U.	50	48	25	100	14	40	65	40	80	6	100	100	30	130	15	50	100	30	150	11
Conductance	µS/cm	695	478	120	596	24	399	188	115	450	11	389	315	170	442	22	654	265	160	504	16
Dissolved Organic Carbon	mg/L	12	20	10	37	23	11	100	8	34	10	16	23	6	53	20	15	205	7	29	12
Hardness	mg/L	357	253	134	281	12	192	86	60	229	7	195	153	108	196	12	342	141	132	232	7
Magnesium	mg/L	19	17	5	201		12	7	4	17	12	14	11	8	14	23	20	10	8	17	17
pH		7.3	7.4	7.2	8.6		7.8	7.5	7.4	8.2	11	8.0	7.8	7.2	8.3	23	8.0	7.7	7.3	8.1	16
Potassium	mg/L	1.7	1.4	0.5	1.9		2.0	1.5	1.0	2.6	12	0.6	0.5	0.0	0.9	22	1.8	0.7	0.3	1.5	17
Sodium	mg/L	1.7	1.4	3	22		2.0	1.5	1.0	15	12	8	12	7	22	23	1.0	12	7	39	17
Sulphate	mg/L mg/L	99	5	1	43		27	1	2	7	12	16	5	1	0	23	81	12	,	12	17
Sulphide	μg/L	< 3	10	< 2	43		< 3	4	2	7	12	< 3	5	1	2	23	< 3	4	0	12	- 17
Total Alkalinity	mg/L	282	259	61	333	24	183	102	56	254	12	193	170	100	232	23	281	141	105	267	17
Total Dissolved Solids	mg/L mg/L	470	303	79	476	24	240	136	72	297	12	240	195	112	232	23	460	141	103	319	17
Total Organic Carbon	mg/L mg/L	470	22	10	38		14	130	8	35	12	19	24	6	53	23	400	26	20	31	16
Total Suspended Solids	mg/L mg/L	< 3	6	10	72		14	10	< 1	35	12	19	24	< 0.4	6	22	< 3	20	< 0.4	10	10
Nutrients and Chlorophyll a	mg/L	< 5	0	2	12	21	10	5	< 1	50	12	5	5	< 0.4	0	23	< 3	5	< 0.4	10	17
Nitrate + Nitrite	mg/L	0.1		< 0.05	0.3	2	< 0.1	< 0.016	< 0.003	< 0.05	2	< 0.1		0.025	0.055	2	< 0.1		< 0.002	0.014	2
Nitrogen - Ammonia	mg/L mg/L	0.1	-	< 0.05	1.63	2	< 0.1	< 0.016	< 0.003	< 0.05	2	< 0.1	0.05	0.025	0.055	2	< 0.1	0.04	< 0.002	0.014	1
Nitrogen - Kjeldahl	v	0.28	1.3	0.39	1.05	23	0.03	0.8	0.04	2.1	11	0.8	1.02	0.48	- 1.66	22	0.03	0.04	0.35	2.18	14
<u> </u>	mg/L	0.9	1.5	0.4	3	23	0.7	0.8	0.04	2.1	11	0.8	1.02	0.48	1.00	22	0.7	0.92	0.55	2.18	14
Nitrogen - Total	mg/L	1	27.5	22	100	24	39	21	. 20	00	11		25		52	22		20	17	70	16
Phosphorus, Total	μg/L	17	37.5	22	190	24		31	< 20	90	11	21	25	< 5	53	22	16	28	17	70	16
Phosphorus, Total Dissolved	µg/L	/	< 20	-	-	9	24	< 20	-	-	1	9	-	-	-	-	9	-	-	-	-
Chlorophyll a	μg/L	0	< 1	< 1	6	9	-	-	< 1	4	2	0	1	< 1	8	6	-	1	< 1	10	7
Biochemical Oxygen Demand Biochemical Oxygen Demand	mg/L	< 2		2	4	2	2		0.8	3	2	< 2	0.5		1	1	< 2	1.5			1
Toxicity	IIIg/L	< 2	-	Z	4	Z	Z	-	0.8	3	Z	< 2	0.5	-	-	1	< 2	1.5	-		
	%	> 91	> 99			1	> 91					> 91	> 91	-		1	> 91			— — — — —	
Microtox IC50 @ 15 min	,.	-	> 99	-	-	1	-	-	-	-	-	-		-	-	1		-	-		
Microtox IC25 @ 15 min	%	> 91	-	-	-	-	> 91	-	-	-	-	> 91	> 91	-	-	1	> 91	-	-	-	-
Algal Growth Inhibition Test (72 h) - IC25	%	> 100	-	-	-	-	> 100	-	-	-	-	> 100	-	-	-	-	> 100	-	-		-
Algal Growth Inhibition Test (72 h) - IC50	%	> 100	-	-	-	-	> 100	-	-	-	-	> 100	-	-	-	-	> 100	-	-		
Algal Growth Inhibition Test (72 h) - LOEC	%	> 100	-	-	-	-	> 100	-	-	-	-	> 100	-	-	-	-	> 100	-	-		
Algal Growth Inhibition Test (72 h) - NOEC	%	100	-	-	-	-	100	-	-	-	-	100	-	-	-	-	100	-	-	-	-
Ceriodaphnia 7 d Reproduction Test - IC25	%	> 100	> 100	-	-	1	> 100	> 100	-	-	1	> 100	> 100	-	-	1	> 100	-	-		
Ceriodaphnia 7 d Reproduction Test - IC50	%	> 100	> 100	-	-	1	> 100	> 100	-	-	1	> 100	> 100	-	-	1	> 100	-	-		
Ceriodaphnia 7 d Reproduction Test - LOEC	%	> 100	> 100	-	-	1	> 100	> 100	-	-	1	> 100	> 100	-	-	1	> 100	-	-	-	-
Ceriodaphnia 7 d Reproduction Test - NOEC	%	100	100	-	-	1	100	100	-	-	1	100	100	-	-	1	100	-	-	-	-
Ceriodaphnia 7 d Mortality Test - LC25	%	> 100	-	-	-	-	> 100	> 100	-	-	1	> 100	-	-	-	-	> 100	-	-	-	
Ceriodaphnia 7 d Mortality Test - LC50	%	> 100	> 100	-	-	1	> 100	> 100	-	-	1	> 100	> 100	-	-	1	> 100	-	-	-	-
Ceriodaphnia 7 d Mortality Test - LOEC	%	> 100	> 100	-	-	1	> 100	> 100	-	-	1	> 100	> 100	-	-	1	> 100	-	-	-	-
Ceriodaphnia 7 d Mortality Test - NOEC	%	100	100	-	-	1	100	100	-	-	1	100	100	-	-	1	100	-	-	-	-

Table II-5. Water Quality in the Muskeg River: Sample Station MUR-2

		Winter						Spring				s	ummer			1		Fall			
Parameter	Units			storical (19	74 - 1998)					977 - 1998)				torical (19	76 - 1998)			Hi	storical (197	76 - 1985)	
		1999	median	min	max	n	1999	median	min	max	n	1999	median	min	max	n	1999	median	min	max	n
Fathead Minnow 7d Growth - IC25	%	> 100	> 100	-	-	1	> 100	> 100	-	-	1	> 100	> 100	_	_	1	> 100	-	_	_	
Fathead Minnow 7d Growth - IC50	%	> 100	> 100	-	-	1	> 100	> 100	-	-	1	> 100	> 100	-	-	1	> 100	-	-	_	
Fathead Minnow 7d Growth - LOEC	%	> 100	> 100	-	-	1	> 100	> 100	-	-	1	> 100	> 100	-	-	1	> 100	-	-	-	
Fathead Minnow 7d Growth - NOEC	%	100	100	-	-	1	100	100	-	-	1	100	100	-	-	1	100	-	-	-	
Fathead Minnow 7d Mortality Test - LC25	%	> 100		-	-	-	> 100	> 100	-	-	1	> 100		-	-	-	> 100	-	-	-	
Fathead Minnow 7d Mortality Test - LC50	%	> 100	> 100	-	-	1	> 100	> 100	-	-	1	> 100	> 100	-	-	1	> 100	-	-	-	-
Fathead Minnow 7d Mortality Test - LOEC	%	> 100	> 100	-	-	1	> 100	> 100	-	-	1	> 100	> 100	-	-	1	> 100	-	-	-	-
Fathead Minnow 7d Mortality Test - NOEC	%	100	100	-	-	1	100	100	-	-	1	100	100	-	-	1	100	-	-	-	-
Organics																					
Naphthenic acids	mg/L	1	< 1	-	-	1	< 1	4	-	-	1	4	-	-	-	-	< 1	-	-	-	-
Total Phenolics	μg/L	2	-	-	-	-	3	-	-	-	-	. 5	-	-	-	-	3	-	-	-	-
Total Recoverable Hydrocarbons	mg/L	< 0.5	2	-	-	1	< 0.5	-	< 0.1	< 0.5	2	< 0.5	< 0.1	-	-	1	0.5	0.2	-	-	1
Metals (Total)																					
Aluminum (Al)	μg/L	270	40	< 10	580	23	350	70	< 10	231	11	250	50	< 10	420	22	60	35	< 10	320	14
Antimony (Sb)	μg/L	< 0.8	< 0.4	-	-	1	< 0.8	< 0.4	-	-	1	< 0.8	-	_	-	-	< 0.8	-	-	-	-
Arsenic (As)	μg/L	< 1	< 0.4	-	-	1	< 1	-	0.3	< 0.4	2	< 1	-	0.4	< 5	2	< 1	1.5	1	< 5	3
Barium (Ba)	μg/L	89.7	71.2	-	-	1	57.1	25.4	-	-	1	57.2	-	-	-	-	80.1	-	-	-	-
Beryllium (Be)	μg/L	< 1	< 1	-	-	1	< 1	< 1	-	-	1	< 1	-	-	-	-	< 1	-	-	-	-
Boron (B)	μg/L	40	58	-	-	1	23	-	45	60	2	62	40	-	-	1	41	10	-	-	1
Cadmium (Cd)	μg/L	< 0.2	-	< 0.2	1	2	< 0.2	-	< 0.2	< 1	2	< 0.2	< 1	-	-	1	< 0.2	< 1	-	-	1
Calcium (Ca)	μg/L	118300	72500	-	-	1	58700	23400	-	-	1	56700	-	-	-	-	109000	-	-	-	-
Chromium (Cr)	μg/L	3.8	-	< 0.4	10	2	< 0.8	-	< 0.4	5	2	< 0.8	< 1	-	-	1	< 0.8	8	-	-	1
Cobalt (Co)	μg/L	0.4	0.5	-	-	1	0.3	< 0.5	-	-	1	< 0.2	-	-	-	-	0.2	-	-	-	-
Copper (Cu)	μg/L	2	2	-	-	1	< 1	-	0.8	< 1	2	1	< 1	-	-	1	2	< 1	-	-	1
Iron (Fe)	µg/L	1270	2420	1900	2900	4	1860	-	590	790	2	550	1300	-	-	1	840	990	-	-	1
Lead (Pb)	µg/L	0.3	-	0.5	7	2	0.2	-	0.4	< 2	2	0.2	2	-	-	1	< 0.1	< 2	-	-	1
Lithium (Li)	µg/L	14	12	-	-	1	8	6	-	-	1	9	-	-	-	-	14	-	-	-	-
Magnesium (Mg)	µg/L	19820	16900	-	-	1	13300	6840	-	-	1	13600	-	-	-	-	20900	-	-	-	-
Manganese (Mn)	μg/L	386.4	-	430	660	2	117	-	36	39.3	2	< 127	29	-	-	1	24.1	< 53	-	-	1
Mercury (Hg)	µg/L	< 0.2	< 0.1	< 0.1	0.5	25	< 0.2	< 0.1	< 0.05	0.3	11	< 0.2	< 0.1	< 0.1	< 0.2	22	< 0.2	< 0.1	0.05	0.4	16
Molybdenum (Mo)	μg/L	0.2	< 0.1	-	-	1	0.1	0.2	-	-	1	0.2	-	-	-	-	0.1	-	-	-	-
Nickel (Ni)	μg/L	5.2	1.3	-	-	1	1.4	-	< 0.4	< 1	2	1	1	-	-	1	3.4	< 1	-	-	1
Potassium (K)	μg/L	12690	1470	-	-	1	2070	1570	-	-	1	610	-	-	-	-	1940	-	-	-	-
Selenium (Se)	μg/L	< 0.8	< 0.4	-	-	1	< 0.8	-	0.2	< 0.4	2	< 0.8	< 0.2	-	-	1	< 0.8	< 0.2	-	-	1
Silver (Ag)	μg/L	< 0.4	< 1	-	-	1	< 0.4	< 1	-	-	1	< 0.4	-	-	-	-	< 0.4	-	-	-	-
Sodium (Na)	μg/L	23100	13400	-	-	1	7900	6200	-	-	1	7800	-	-	-	-	12200	-	-	-	-
Strontium (Sr)	μg/L	181	178	-	-	1	114	59.4	-	-	1	137	-	-	-	-	210	-	-	-	-
Titanium (Ti)	μg/L	5	< 50	4	< 50	6	4.7	< 10	3.6	< 10	3	< 0.6	-	< 50	< 50	2	2.6	-	< 50	< 50	2
Uranium (U)	μg/L	0.4	< 0.1	-	-	1	0.2	< 0.1	-	-	1	< 0.1	-	-	-	-	0.2	-	-	-	-
Vanadium (V)	μg/L	< 0.2	0.5	-	-	1	0.6	-	0.4	< 1	2	0.3	1	-	-	1	< 0.2	< 1	-	-	1
Zinc (Zn)	μg/L	9	-	13	30	2	10	-	3	11	2	15	8	-	-	1	6	2	-	-	1
Metals (Dissolved)																					
Aluminum (Al)	μg/L	10	-	-	-	-	< 10	31.5	-	-	1	230	-	-	-	-	< 10	-	-	-	-
Antimony (Sb)	μg/L	< 0.8	-	-	-	-	< 0.8	< 0.4	-	-	1	< 0.8	-	-	-	-	< 0.8	-	-	-	-
Arsenic (As)	μg/L	< 0.4	0.4	< 0.2	20	23	< 0.4	0.5	< 0.2	0.6	10	0.5	0.35	< 0.2	5	20	< 0.4	0.4	< 0.2	12	13
Barium (Ba)	μg/L	93.3	-	-	-	-	51.9	19	-	-	1	57.3	-	-	-	-	81.8	-	-	-	-
Beryllium (Be)	μg/L	< 0.5	-	-	-	-	< 0.5	< 0.5	-	-	1	< 0.5	-	-	-	-	< 0.5	-	-	-	-
Boron (B)	μg/L	31	115	30	260	14	26	110	39	200	7	43	100	10	180	9	41	135	< 50	220	8
Cadmium (Cd)	μg/L	< 0.1	-	-	-	-	< 0.1	< 0.1	-	-	1	< 0.1	-	-	-	-	< 0.1	-	-	-	-

Table II-5. Water Quality in the Muskeg River: Sample Station MUR-2

				Winter					Spring					Summer					Fall		
Parameter	Units		Н	istorical (19	074 - 1998)			Hi	storical (19	77 - 1998)			Hi	storical (19	976 - 1998)			Hi	istorical (19	076 - 1985)	
		1999	median	min	max	n	1999	median	min	max	n	1999	median	min	max	n	1999	median	min	max	n
Chromium (Cr)	μg/L	< 0.4	< 3	< 3	7	22	0.4	< 3	< 0.4	6	10	< 0.4	< 3	< 3	16	21	< 0.4	< 3	< 3	7	13
Cobalt (Co)	μg/L	0.4	-	-	-	-	0.2	0.2	-	-	1	0.2	-	-	-	-	0.2	-	-	-	_
Copper (Cu)	μg/L	1	-	-	-	-	0.8	1.3	-	-	1	1.5	-	-	-	-	1.9	-	-	-	_
Iron (Fe)	μg/L	340	-	-	-	-	350	1030	-	-	1	350	-	-	-	-	420	-	-	-	_
Lead (Pb)	μg/L	0.3	-	-	-	-	< 0.1	0.37	-	-	1	0.2	-	-	-	-	< 0.1	-	-	-	_
Lithium (Li)	μg/L	14	-	-	-	-	9	5	-	-	1	9	-	-	-	-	12	-	-	-	_
Manganese (Mn)	μg/L	377	-	-	-	-	54.3	36.3	-	-	1	24.2	-	-	-	-	17.3	-	-	-	_
Mercury (Hg)	μg/L	< 0.1	-	-	-	-	< 0.1	< 0.2	-	-	1	0.2	-	-	-	-	< 0.01	-	-	-	_
Molybdenum (Mo)	μg/L	0.1	-	-	-	-	0.2	0.13	-	-	1	< 0.9	-	-	-	-	0.1	-	-	-	_
Nickel (Ni)	μg/L	3.9	-	-	-	-	0.6	1	-	-	1	1.4	-	-	-	-	3.3	-	-	-	-
Selenium (Se)	μg/L	< 0.4	< 0.2	< 0.2	0.9	22	< 0.4	< 0.2	< 0.2	< 0.5	10	< 0.4	< 0.2	< 0.2	0.8	20	< 0.4	< 0.2	< 0.2	< 0.5	11
Silver (Ag)	μg/L	< 0.2	-	-	-	-	< 0.2	< 0.2	-	-	1	< 0.2	-	-	-	-	< 0.2	-	-	-	_
Strontium (Sr)	μg/L	198	-	-	-	-	120	52.9	-	-	1	144	-	-	-	-	211	-	-	-	_
Titanium (Ti)	μg/L	1.5	-	-	-	-	1	0.8	-	-	1	0.7	-	-	-	-	1.2	-	-	-	_
Uranium (U)	μg/L	0.3	-	-	-	-	0.1	< 0.05	-	-	1	< 0.1	-	-	-	-	0.2	-	-	-	
Vanadium (V)	μg/L	< 0.1	-	-	-	-	0.3	0.1	-	-	1	0.2	-	-	-	-	< 0.1	-	-	-	
Zinc (Zn)	μg/L	4	-	-	-	-	6	8	-	-	1	10	-	-	-	-	2	-	-	-	

Based on information from Shell (1975), Golder (1998a, 1998b), R.L.&L. (1982, 1989), unpublished monitoring data from Syncrude Canada Ltd. and NAQUADAT station AB07DA0610.

	T			Winter					Spring				S	ummer		1			Fall	
Parameter	Units		His	storical (198	85 - 1998)			Hi	storical (1	988 - 1998)			Hist	torical (198	8 - 1998)			His	torical (198	35 - 1996)
		1999	median	min	max	n	1999	median	min	max	n	1999	median	min	max	n	1999	median	min	max n
Field measured																			-	
pH		7.3	7.2	6.8	8.4	3	8.2	7.6	-	-	1	7.9	7.3	7.2	7.4	3	7.7	7.6	7.4	7.9 3
Specific Conductance	µS/cm	545		514	581	3		243	-	-	1	371	275	223	390	3	439	316	181	430 3
Temperature	°C	0.2	0.3	0.0	0.5	3	8.4	13.5	-	-	1	18.7	15.5	15.0	19.3	3	2.4	3.0	0.4	5.0 3
Dissolved Oxygen	mg/L	0.9	2.7	0.8	2.9	3	8.9	10.0	-	-	1	5.5	7.3	5.4	8.8	3	8.6	10.5	9.4	10.6
Conventional Parameters and Major Ions																			· · · · ·	
Bicarbonate (HCO3)	mg/L	372	364	358	388	3	184	162	-	-	1	251	185	149	257	3	305	212	132	255 3
Calcium	mg/L	84		82	88			34	-	-	1	56	43	40	60	3	71	47	28	58 3
Carbonate (CO3)	mg/L	< 5		< 0.5	< 0.5	2	< 5	< 0.5	-	-	1	< 5	-	< 0.5	< 0.5	2	< 5	-	< 0.5	< 0.5
Chloride	mg/L mg/L	3.0		2.4	4.3	3	2.0	1.7			1	1.0	0.5	-0.5	1.7	- 3	2.0	1.4	0.9	2.4
Colour	T.C.U.	40		2.4	200	3	70	80		_	1	150	100	80	100	3	50	100	60	150 3
Conductance	μS/cm	572		20	200	1	304	00			1	390	100	240	284	2	479	211	00	150
Dissolved Organic Carbon	mg/L	12		-	-	1	16	-		-	-	16	-	240	284	2	479	211		
Hardness	mg/L mg/L	289		285	303	3	16	125	-	-	-	10	- 157	139	209	2	240	168	105	204 3
Magnesium	mg/L mg/L	289		285	20	2	140	125	-	-	1	199	137	139	14	2	240	108	105	14 3
0	mg/L	-	-	20	20	3		10		-	1		12			3			9	14
pH	/T	7.2	7.1	-	- 17	1	7.6	-	-	-	-	7.6	-	7.1	7.4	2	8.1	7.5	- 0.5	
Potassium	mg/L	1.4	1.2	1.2	1.7		1.5	1.1	-	-	1	0.6	0.7			3	1.3	0.7	0.5	1.1 3
Sodium	mg/L	8	9	9	10		4	5	-	-	1	6	4	4	7	3	7	6	4	7 3
Sulphate	mg/L	6	2	1	2	3	6	1	-	-	1	5	1	0	1	3	5	3	1	3 3
Sulphide	μg/L	< 3	< 5	-	-	1	30	-	-	-	-	< 3	-	< 5	< 5	2	< 3	< 5	-	- 1
Total Alkalinity	mg/L	305		294	318	3	151	133	-	-	1	206	152	122	211	3	250	174	108	209 3
Total Dissolved Solids	mg/L	280		305	332	3	220	134	-	-	1	240	190	152	213	3	330	174	154	215 3
Total Organic Carbon	mg/L	15	17	16	22		16	18	-	-	1	19	25	20	25	3	17	24	21	24 3
Total Suspended Solids	mg/L	7	18	10	24	3	< 3	1	-	-	1	< 3	4	1	16	3	< 3	4	< 0.4	7 3
Nutrients and Chlorophyll a																				
Nitrate + Nitrite	mg/L	< 0.1	0.01	0.005	0.05	3	< 0.1	0.01	-	-	1	0.1	0.022	0.017	0.113	3	< 0.1	0.026	0.003	0.032
Nitrogen - Ammonia	mg/L	0.96	0.75	0.58	0.82	3	0.06	0.04	-	-	1	0.07	0.03	< 0.01	0.13	3	0.14	0.06	0.04	0.08
Nitrogen - Kjeldahl	mg/L	1.1	1.76	1.47	3.4	3	0.7	0.7	-	-	1	0.9	0.85	0.68	1.02	3	0.7	0.74	0.54	1.08 3
Nitrogen - Total	mg/L	1.1					0.7					1					0.7			
Phosphorus, Total	μg/L	39	103	65	110	3	46	34	-	-	1	42	36	35	50	3	38	35	17	46 3
Phosphorus, Total Dissolved	μg/L	5	4	-	-	1	28	-	-	-	-	17	-	17	23	2	12	14	-	-
Chlorophyll a	μg/L	0	< 0.1	-	-	1	_	-	-	-	-	0	-	1.5	2.5	2	-	0.4	-	
Biochemical Oxygen Demand		<u>. </u>	.																L	· · · ·
Biochemical Oxygen Demand	mg/L	3	1.9	0.6	4.6	3	< 2	1	-	-	1	< 2	0.54	0.4	0.6	3	< 2	0.8	< 0.1	1.1 3
Toxicity			Ł															·		·
Microtox IC50 @ 15 min	%	> 91	-	-	-	-	> 91	-	-	-	-	-	-	-	-	-	> 91	-	-	-
Microtox IC25 @ 15 min	%	> 91		-	-	-	> 91	-	-	-	-	-	-	-	-	-	> 91	-	_	-
Algal Growth Inhibition Test (72 h) - IC25	%	> 100		-	-	_	> 100	-		_	_	> 100	-		_	_	> 100			
Algal Growth Inhibition Test (72 h) - IC50	%	> 100					> 100			_		> 100					> 100		\rightarrow	
Algal Growth Inhibition Test (72 h) - LOEC	%	> 100	-	-	-	_	> 100	-		-	-	> 100	-	-	-	-	> 100	-		
Algal Growth Inhibition Test (72 h) - LOEC Algal Growth Inhibition Test (72 h) - NOEC	%	> 100		-	-	-	> 100	-	-	-	-	> 100	-	-	-	-	> 100	-		
	%	83	> 100	-	-	-	100	> 100	-	-	-	> 100	> 100	-	-	-	> 100	-		
Ceriodaphnia 7 d Reproduction Test - IC25 Ceriodaphnia 7 d Reproduction Test - IC50	%	> 100	> 100	-	-	1	- 100	> 100	-	-	1	> 100	> 100	-	-	1	> 100	-	-	
· · · · · ·	-		> 100	-	-	1			-	-	1			-	-	1	> 100			
Ceriodaphnia 7 d Reproduction Test - LOEC	%	100		-	-	1	> 100	> 100	-	-	1	> 100	> 100	-	-	1		-		
Ceriodaphnia 7 d Reproduction Test - NOEC	%	50	100	-	-	1	100	100	-	-	1	100	100	-	-	1	100			
Ceriodaphnia 7 d Mortality Test - LC25	%	> 100	-	-	-	-	-	> 100	-	-	1	> 100	-	-	-	-	> 100			
Ceriodaphnia 7 d Mortality Test - LC50	%	> 100	> 100	-	-	1	100	> 100	-	-	1	> 100	> 100	-	-	1	> 100	-	-	
Ceriodaphnia 7 d Mortality Test - LOEC	%	> 100	> 100	-	-	1	> 100	> 100	-	-	1	> 100	> 100	-	-	1	> 100	-	-	
Ceriodaphnia 7 d Mortality Test - NOEC	%	100	100	-	-	1	100	100	-	-	1	100	100	-	-	1	100	-	-	-

Table II-6. Water Quality in the Muskeg River: Sample Station MUR-5

				Winter					Spring				s	ummer					Fall		
Parameter	Units			storical (19	85 - 1998)			н		988 - 1998))			torical (19	88 . 1998)			Hi	storical (19	85 - 1996)	
	cinto	1999	median	min	max	n	1999	median	min	max	n	1999	median	min	max	n	1999	median	min	max	n
Fathead Minnow 7d Growth - IC25	%	> 100	73.3	-		1	> 100	> 100			- 1	> 100	24.4			1	> 100	-	-		
Fathead Minnow 7d Growth - IC50	%	> 100	> 100	-		1	> 100	> 100			- 1	> 100	84.2	_		1	> 100				
Fathead Minnow 7d Growth - LOEC	%	> 100	> 100	-		1	> 100	> 100			- 1	> 100	> 100	-	-	1	> 100	-	-		
Fathead Minnow 7d Growth - NOEC	%	100	50	-		1	100	100			- 1	100	50	-	-	1	100	-	-		
Fathead Minnow 7d Mortality Test - LC25	%	> 100	-	-	-	-	> 100	> 100			- 1	> 100	-	-	-	-	4.3	-	-		-
Fathead Minnow 7d Mortality Test - LC50	%	> 100	> 100	-	-	1	> 100	> 100			- 1	> 100	82.2	-	-	1	9	-	-		-
Fathead Minnow 7d Mortality Test - LOEC	%	> 100	> 100	-	-	1	> 100	> 100			- 1	> 100	50	-	-	1	12.5	-	-		-
Fathead Minnow 7d Mortality Test - NOEC	%	100	50	-	-	1	100	100			- 1	100	25	-	-	1	6.25	-	-	_	-
Organics																					
Naphthenic acids	mg/L	< 1	-	-	-	-	2	-				< 1	-	-	-	-	1	-	-		-
Total Phenolics	μg/L	2	< 1	-	-	1	7	-				2	-	< 1	< 1	2	2	< 1	-	_	1
Total Recoverable Hydrocarbons	mg/L	< 0.5	-	0.5	0.6	2	< 0.5	< 0.1			- 1	< 0.5	0.1	-	-	1	0.7	-	< 0.1	0.4	2
Metals (Total)																					
Aluminum (Al)	μg/L	70	20	< 10	50	3	90	< 100			- 1	70	60	30	100	3	< 20	10	10	50	3
Antimony (Sb)	μg/L	< 0.8	-	-	-	-	< 0.8	-				< 0.8	-	-	-	-	< 0.8	-	-		-
Arsenic (As)	μg/L	< 1	< 0.2	< 0.2	0.4	3	< 1	0.4			- 1	< 1	< 0.2	< 0.2	0.2	3	< 1	0.3	< 0.2	0.4	3
Barium (Ba)	μg/L	81	80	-	-	1	48	-				59	-	40	50	2	62	20	-	_	1
Beryllium (Be)	μg/L	< 1	< 1	-	-	1	< 1	-				< 1	-	1	2	2	< 1	4	-	_	1
Boron (B)	µg/L	34	50	40	60	3	20	< 10			- 1	34	30	20	40	3	33	< 10	< 10	< 50	3
Cadmium (Cd)	μg/L	< 0.2	< 1	< 0.2	< 1	3	< 0.2	< 1			- 1	< 0.2	< 0.2	< 0.2	< 1	3	< 0.2	< 1	< 0.2	< 1	3
Calcium (Ca)	μg/L	83100	-	-	-	-	44700	-				50200	-	-	-	-	70800	-	-	_	-
Chromium (Cr)	µg/L	< 0.8	-	< 1	1	2	< 0.8	< 1			- 1	< 0.8	3	< 1	13	3	< 0.8	< 1	< 1	3	3
Cobalt (Co)	µg/L	1.2	-	-	-	-	< 0.2	-				< 0.2	-	0.7	0.8	2	< 0.2	1	-	_	1
Copper (Cu)	µg/L	< 1	-	< 1	< 1	2	< 1	< 1			- 1	1	< 1	< 0.2	1.3	3	1	< 1	< 1	1.6	3
Iron (Fe)	µg/L	3300	6200	4090	6550	3	1760	1150			- 1	1720	1920	960	3020	3	1980	1410	260	1500	3
Lead (Pb)	μg/L	0.6	2	0.8	2	3	0.2	< 2			- 1	0.3	< 0.5	< 0.3	< 2	3	< 0.1	< 2	< 0.3	< 2	3
Lithium (Li)	μg/L	12	11	-	-	1	< 6	-				8	-	4	7	2	75	4	-	-	1
Magnesium (Mg)	μg/L	19420	-	-	-	-	10300	-				10600	-	-	-	-	16300	-	-	-	-
Manganese (Mn)	μg/L	563	561	426	1500	3	56	30			- 1	< 127	69	33	160	3	193	70	11	77	3
Mercury (Hg)	μg/L	< 0.2	< 0.1	< 0.05	< 50	3	< 0.2	< 0.05			- 1	< 0.2	< 50	< 0.05	< 50	3	< 0.2	< 0.1	< 0.05	< 50	3
Molybdenum (Mo)	μg/L	< 0.1	< 3	-	-	1	0.1	-				< 0.1	-	< 3	< 3	2	< 0.1	< 3	-	-	1
Nickel (Ni)	μg/L	2.6	< 1	< 0.5	< 1	3	0.6	1			- 1	0.8	8.6	< 1	26.1	3	0.9	< 1	< 0.5	< 1	3
Potassium (K)	μg/L	950	-	-	-	-	1440	-				470	-	-	-	-	1480	-	-	-	-
Selenium (Se)	μg/L	< 0.8	< 0.2	< 0.2	0.5	3	< 0.8	0.4			- 1	< 0.8	< 0.2	< 0.2	< 0.2	3	< 0.8	0.2	< 0.2	0.6	3
Silver (Ag)	μg/L	< 0.4	< 0.1	-	-	1	< 0.4	-				1.2	-	< 0.1	< 0.1	2	< 0.4	< 0.1	-	-	1
Sodium (Na)	μg/L	7400	-	-	-	-	4800	-				4600	-	-	-	-	6700	-	-	-	
Strontium (Sr)	μg/L	164	183	-	-	1	82.7	-		-		126	-	75	103	2	144	55	-	-	1
Titanium (Ti)	μg/L	< 0.6	-	-	-	-	1.7	-		-		< 0.6	-	-	-	-	< 0.6	-	-	-	
Uranium (U)	μg/L	< 0.1	-	-	-	-	< 0.1	-				< 0.1	-	-	-	-	< 0.1	-	-	-	
Vanadium (V)	μg/L	< 0.2	< 1	< 1	< 2		0.4	1		-	- 1	0.4	3	< 1	3	3	< 0.2	< 2	< 1	2	3
Zinc (Zn)	μg/L	14	-	5	24	2	10	1			- 1	5	< 1	-	-	1	7	-	4	16	2
Metals (Dissolved)																					
Aluminum (Al)	μg/L	20	-	-	-	-	20	-				10	-	-	-	-	< 10	-	-	_	
Antimony (Sb)	μg/L	< 0.8	-	-	-	-	< 0.8	-				0.9	-	-	-	-	< 0.8	-	-	-	
Arsenic (As)	μg/L	< 0.4	-	-	-	-	< 0.4	-		-		2.3	-	-	-	-	< 0.4	-	-	-	
Barium (Ba)	μg/L	84	-	-	-	-	42	-		-		63	-	-	-	-	61	-	-		
Beryllium (Be)	μg/L	< 0.5	-	-	-	-	< 0.5	-				< 0.5	-	-	-	-	< 0.5	-	-	-	
Boron (B)	μg/L	40	-	-	-	-	23	-		-		37	-	-	-	-	40	-	-	-	
Cadmium (Cd)	μg/L	< 0.1	-	-	-	-	< 0.1	-				0.1	-	-	-	-	< 0.1	-	-	-	

Table II-6. Water Quality in the Muskeg River: Sample Station MUR-5

				Winter					Spring				1	Summer					Fall		
Parameter	Units		Hi	storical (19	985 - 1998)			Н	istorical (1	988 - 1998)			Hi	storical (19	988 - 1998)			Hi	storical (19	985 - 1996)	1
		1999	median	min	max	n	1999	median	min	max	n	1999	median	min	max	n	1999	median	min	max	n
Chromium (Cr)	μg/L	< 0.4	-	-	-	-	< 0.4	-	-	-	-	< 0.4	-	-	-	-	< 0.4	-	-	-	
Cobalt (Co)	μg/L	0.3	-	-	-	-	0.1	-	-	-	-	0.2	-	-	-	-	0.1	-	-	-	
Copper (Cu)	μg/L	0.6	-	-	-	-	0.8	-	-	-	-	1.5	-	-	-	-	< 0.6	-	-	-	
Iron (Fe)	μg/L	380	-	-	-	-	410	-	-	-	-	440	-	-	-	-	300	-	-	-	. –
Lead (Pb)	μg/L	0.1	-	-	-	-	0.2	-	-	-	-	0.2	-	-	-	-	< 0.1	-	-	-	. –
Lithium (Li)	μg/L	13	-	-	-	-	6	-	-	-	-	8	-	-	-	-	17	-	-	-	
Manganese (Mn)	μg/L	498	-	-	-	-	47	-	-	-	-	55	-	-	-	-	191	-	-	-	
Mercury (Hg)	μg/L	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.2	-	-	-	-	< 0.01	-	-	-	-
Molybdenum (Mo)	μg/L	< 0.1	-	-	-	-	0.1	-	-	-	-	5.2	-	-	-	-	< 0.1	-	-	-	
Nickel (Ni)	μg/L	2	-	-	-	-	< 0.7	-	-	-	-	1.1	-	-	-	-	1	-	-	-	· -
Selenium (Se)	μg/L	< 0.4	-	-	-	-	< 0.4	-	-	-	-	< 0.4	-	-	-	-	< 0.4	-	-	-	
Silver (Ag)	μg/L	< 0.2	-	-	-	-	< 0.2	-	-	-	-	1.3	-	-	-	-	< 0.2	-	-	-	
Strontium (Sr)	μg/L	188	-	-	-	-	79.7	-	-	-	-	139	-	-	-	-	155	-	-	-	
Titanium (Ti)	μg/L	< 0.3	-	-	-	-	0.3	-	-	-	-	1.3	-	-	-	-	< 0.3	-	-	-	· -
Uranium (U)	μg/L	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	-	-	-	
Vanadium (V)	μg/L	< 0.1	-	-	-	-	< 0.1	-	-	-	-	0.2	-	-	-	-	0.3	-	-	-	
Zinc (Zn)	μg/L	2	-	-	-	-	13	-	-	-	-	5	-	-	-	-	< 2	-	-	-	-

Based on information from R.L.&L. (1989), unpublished monitoring data from Syncrude Canada Ltd. and NAQUADAT station AB07DA2750.

Table II-7. Water Quality in the Muskeg River: Sample Station MUR-6

Parameter		Spring						2	Summer		Fall					
	Units	Historical (1974 - 1998)				Historical (1974 - 1998)						Historical (1974 - 1998)				
		1999	median	min	max	n	1999	median	min	max	n	1999	median	min	max	n
Field measured			I	I									I		l	
pH		10.3	7.4	-	-	1	7.5	7.5	-	-	1	7.9	-	7.6	7.8	2
Specific Conductance	µS/cm	220	245	-	-	1	316	382	-	-	1	352	-	303	400	2
Temperature	°C	2.6	7.0	4.5	14.0	5	15.7	15.0	10.8	17.0	7	1.6	5.0	0.4	10.5	5
Dissolved Oxygen	mg/L	5.3	7.6	4.0	9.5	5	7.2	4.1	0.0	6.2	7		8.1	3.9	10.2	4
Conventional Parameters and Major Ions	0										-					
Bicarbonate (HCO3)	mg/L	124	-	84	160	2	210	179	123	257	3	261	240	204	287	3
Calcium	mg/L	30	24	19	36	6	49	49	27	75	10		44	31	67	7
Carbonate (CO3)	mg/L	< 5	-	< 0.5	< 5	2	< 5	< 5	< 0.5	< 5	3	< 5	-	< 0.5	< 5	2
Chloride	mg/L	2.0	1.1	0.4	1.4	6	1.0	1.5	0.2	2.7	10	1.0	1.3	1.1	1.9	7
Colour	T.C.U.	120	-	25	70	2	100	70	55	100	5	60	100	70	140	4
Conductance	µS/cm	231	151	120	250	5	334	320	188	479	9	410	280	248	441	5
Dissolved Organic Carbon	mg/L	27	21	11	28	4	22	25	22	26	7	18	24	23	25	4
Hardness	mg/L	110	80	75	133	5	176	157	104	222	7	208	182	146	240	6
Magnesium	mg/L	9	8	7	11	6	13	14	9	18	10	16	15	12	17	7
pH		7.2	7.5	7.0	8.2	5	7.3	7.8	7.4	8.0	9	7.2	7.6	7.3	8.0	5
Potassium	mg/L	3.3	1.2	0.9	2.0	6	0.3	0.7	0.2	1.7	10	1.3	1.0	0.3	1.7	7
Sodium	mg/L	3	3	2	5	6	5	5	2	8	10	7	6	5	7	7
Sulphate	mg/L	13	4	2	8	6	6	4	0	9	10	6	1	0	5	7
Sulphide	μg/L	7	72	-	-	1	7	-	101	146	2	14	< 2	-	-	1
Total Alkalinity	mg/L	102	94	69	138	6	172	183	101	266	10	214	167	127	235	7
Total Dissolved Solids	mg/L	190	135	79	150	5	240	219	181	311	8		172	158	320	7
Total Organic Carbon	mg/L	32	17	12	29	6	27	25	17	27	10	22	23	21	30	7
Total Suspended Solids	mg/L	< 3	5	1	6	6	5	4	1	7	10	16	4	0.4	25	7
Nutrients and Chlorophyll a															<u> </u>	
Nitrate + Nitrite	mg/L	< 0.1	-	< 0.003	< 0.05	2	< 0.1	< 0.05	0.029	< 0.05	3		0.028	0.009	< 0.05	3
Nitrogen - Ammonia	mg/L	< 0.05	-	< 0.01	0.05	2	< 0.05	< 0.05	< 0.01	0.14	3	< 0.05	0.08	0.05	0.27	3
Nitrogen - Kjeldahl	mg/L	1.3	0.83	0.72	0.95	5	1	1.04	0.5	1.31	9	1.5	1.26	0.59	5.5	7
Nitrogen - Total	mg/L	1.3					1					1.5				
Phosphorus, Total	μg/L	101	30	< 20	90	6	38	50.5	< 20	75	10	143	36	25	269	7
Phosphorus, Total Dissolved	μg/L	66	-	-	-	-	21	-	-	-	-	29	23	-		1
Chlorophyll a	μg/L	-	-	-	-	-	0	-	-	-	-	-	< 1	< 1	14	3
Biochemical Oxygen Demand	1														r	
Biochemical Oxygen Demand	mg/L	< 2	0.6	-	-	1	< 2	0.5	-	-	1	< 2	1.9	1.6	6	3
Toxicity															r	
Microtox IC50 @ 15 min	%	> 91	-	-	-	-	> 91	-	-	-	-	> 91	-	> 91	> 91	2
Microtox IC25 @ 15 min	%	> 91	-	-	-	-	> 91	-	-	-	-	> 91	-	> 91	> 91	2
Algal Growth Inhibition Test (72 h) - IC25	%	> 100	-	-	-	-	> 100	-	-	-	-	> 100	-	-		
Algal Growth Inhibition Test (72 h) - IC50	%	> 100	-	-	-	-	> 100	-	-	-	-	> 100	-	-		
Algal Growth Inhibition Test (72 h) - LOEC	%	> 100	-	-	-	-	> 100	-	-	-	-	> 100	-	-		-

Table II-7. Water Quality in the Muskeg River: Sample Station MUR-6

Parameter				Spring					Summer		Fall					
	Units	Historical (1974 - 1998)					Historical (1974 - 1998)				I	Historical (1974 - 1998)				
		1999	median	min	max	n	1999	median	min	max	n	1999	median	min	max	n
Algal Growth Inhibition Test (72 h) - NOEC	%	100	-	-	-	-	100	-	-	-	-	100	-	-		
Ceriodaphnia 7 d Reproduction Test - IC25	%	> 100	-	-	-	-	> 100	_	-	-	-	> 100	35	-		1
Ceriodaphnia 7 d Reproduction Test - IC50	%	> 100	-	-	-	-	> 100	-	-	-	-	> 100	> 100	-	_	1
Ceriodaphnia 7 d Reproduction Test - LOEC	%	> 100	-	-	-	-	> 100	-	-	-	-	> 100	25	-		1
Ceriodaphnia 7 d Reproduction Test - NOEC	%	100	-	-	-	-	100	_	-	-	-	100	12.5	-		1
Ceriodaphnia 7 d Mortality Test - LC25	%	-	-	-	-	-	> 100	-	-	-	-	> 100	> 100	-		1
Ceriodaphnia 7 d Mortality Test - LC50	%	> 100	-	-	-	-	> 100	_	-	-	-	> 100	> 100	-		1
Ceriodaphnia 7 d Mortality Test - LOEC	%	50	-	-	-	-	> 100	-	-	-	-	> 100	> 100	-		1
Ceriodaphnia 7 d Mortality Test - NOEC	%	25	-	-	-	-	100	-	-	-	-	100	100	-		1
Fathead Minnow 7d Growth - IC25	%	> 100	-	-	-	-	> 100	_	-	-	-	> 100	12	-		1
Fathead Minnow 7d Growth - IC50	%	> 100	-	-	-	-	> 100	-	-	-	-	> 100	39	-	[]]
Fathead Minnow 7d Growth - LOEC	%	> 100	-	-	-	-	> 100	-	-	-	-	> 100	50	-	[]	1
Fathead Minnow 7d Growth - NOEC	%	100	-	-	-	-	100	-	-	-	-	100	25	-	[]]
Fathead Minnow 7d Mortality Test - LC25	%	> 100	-	-	-	-	35	-	-	-	-	6.4	49	-	_	1
Fathead Minnow 7d Mortality Test - LC50	%	> 100	-	-	-	-	> 100	_	-	-	-	13	> 100	-		1
Fathead Minnow 7d Mortality Test - LOEC	%	> 100	-	-	-	-	50	_	-	-	-	12.5	> 100	-		1
Fathead Minnow 7d Mortality Test - NOEC	%	100	-	-	-	-	25	_	-	-	-	6.25	100	-		1
Organics															I	
Naphthenic acids	mg/L	2	-	-	-	-	< 1	-	-	-	-	< 1	12	-	-	1
Total Phenolics	μg/L	120	-	-	-	-	5	4	-	-	1	3	5	-	-	1
Total Recoverable Hydrocarbons	mg/L	< 0.5	< 0.1	-	-	1	< 0.5	0.1	-	-	1	< 0.5	0.5	< 0.1	0.6	3
Metals (Total)																
Aluminum (Al)	μg/L	30	41	10	220	5	280	34	10	70	7	50	50	< 10	120	
Antimony (Sb)	μg/L	< 0.8	< 0.4	-	-	1	< 0.8	0.8	-	-	1	< 0.8	< 0.8	-		Ţ
Arsenic (As)	μg/L	< 1	-	< 0.4	0.5	2	< 1	< 0.4	< 0.2	5	3	< 1	1	0.4	9	5
Barium (Ba)	μg/L	18	13.5	-	-	1	37	-	20.9	27.5	2	42	88	-	-	Ţ
Beryllium (Be)	μg/L	< 1	< 1	-	-	1	< 1	-	< 1	< 1	2	< 1	< 1	-	-	!
Boron (B)	μg/L	< 4	-	18	20	2	32	18	17	20	3	11	20	8	< 50	3
Cadmium (Cd)	μg/L	< 0.2	-	< 0.2	< 1	2	< 0.2	< 0.2	< 0.2	< 1	3	< 0.2	< 1	< 0.2	< 1	3
Calcium (Ca)	μg/L	31400	-	-	-	-	49600	-	-	-	-	59900	70500	-	-	Ţ
Chromium (Cr)	μg/L	< 0.8	-	< 0.4	< 1	2	< 0.8	< 0.4	< 0.4	< 1	3	< 0.8	< 1	< 0.8	6	3
Cobalt (Co)	μg/L	< 0.2	< 0.5	-	-	1	< 0.2	-	< 0.5	< 0.5	2	< 0.2	0.4	-	-	!
Copper (Cu)	μg/L	< 1	-	< 1	1.1	2	2	1	0.9	1.3	3	1	< 1	< 1	< 1	3
Iron (Fe)	μg/L	1200	-	280	890	2	570	300	280	2700	3	2350	1210	1050	13900	3
Lead (Pb)	μg/L	< 0.1	-	0.6	2	2	0.3	0.3	0.2	< 2	3	< 0.1	2	0.3	2	3
Lithium (Li)	µg/L	< 6	-	-	-	-	7	-	-	-	-	9	9	-		1
Magnesium (Mg)	μg/L	8660			-		13000	-	-		-	16500	17400	-		1
Manganese (Mn)	μg/L	89	-	12	23	2	< 127	23.9	13.4	140	3	335	84	58	786	3
Mercury (Hg)	μg/L	< 0.2	< 0.1	< 0.05	0.2	6	< 0.2	< 0.1	< 0.05	< 0.2	9	< 0.2	< 0.1	< 0.05	4.3	
Molybdenum (Mo)	μg/L	0.2	0.1	-	-	1	0.1	-	0.1	0.1	2	< 0.1	0.1	-	_	1
Nickel (Ni)	µg/L	0.8	-	< 0.4	3	2	1.2	< 0.6	< 0.4	< 1	3	1.6	1	< 1	4	:

Table II-7. Water Quality in the Muskeg River: Sample Station MUR-6

				Spring				9	Summer					Fall		
Parameter	Units		Hi	storical (19	74 - 1998)			Hi	storical (19	974 - 1998)			Hi	storical (19	974 - 1998)	
		1999	median	min	max	n	1999	median	min	max	n	1999	median	min	max	n
Potassium (K)	μg/L	3370	-	-	-	-	290	-	-	-	-	1570	2110	-	-	Í
Selenium (Se)	μg/L	< 0.8	-	0.3	< 0.4	2	< 0.8	-	< 0.2	< 0.4	2	< 0.8	< 0.8	< 0.2	0.9	3
Silver (Ag)	μg/L	1	< 0.1	-	-	1	< 0.4	-	< 0.1	< 0.1	2	< 0.4	< 0.4	-	-	
Sodium (Na)	μg/L	4100	-	-	-	-	5000	-	-	-	-	5800	5600	-	-	[
Strontium (Sr)	μg/L	58.8	35.6	-	-	1	112	-	56.9	79.9	2	120	164	-	-	
Titanium (Ti)	μg/L	1.1	-	< 0.4	< 10	2	< 0.6	1.2	0.4	< 50	3	0.9	-	2.8	< 50	:
Uranium (U)	μg/L	< 0.1	< 0.1	-	-	1	< 0.1	-	< 0.1	< 0.1	2	< 0.1	< 0.1	-	-	1
Vanadium (V)	μg/L	< 0.2	-	< 0.2	< 1	2	0.2	< 0.2	< 0.2	< 1	3	< 0.2	< 1	0.4	< 1	3
Zinc (Zn)	μg/L	6	-	< 1	17	2	13	8	< 1	15	3	6	20	< 7	51	3
Metals (Dissolved)																
Aluminum (Al)	μg/L	10	-	-	-	-	260	-	-	-	-	< 10	10	-	-	1
Antimony (Sb)	μg/L	< 0.8	-	-	-	-	< 0.8	-	-	-	-	< 0.8	< 0.8	-	-	
Arsenic (As)	μg/L	< 0.4	0.5	0.3	0.7	4	0.7	0.25	< 0.2	0.6	6	< 0.4	< 0.3	< 0.2	< 0.4	3
Barium (Ba)	μg/L	18	-	-	-	-	34	-	-	-	-	32	42.2	-	-	
Beryllium (Be)	μg/L	< 0.5	-	-	-	-	< 0.5	-	-	-	-	< 0.5	< 0.5	-	-	1
Boron (B)	μg/L	6	130	100	140	3	23	70	20	90	4	13	50	3	110	
Cadmium (Cd)	μg/L	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	< 0.1	-	-	1
Chromium (Cr)	μg/L	0.6	5	< 3	8	3	< 0.4	3	< 3	6	4	< 0.4	< 3	< 0.4	< 3	:
Cobalt (Co)	μg/L	0.1	-	-	-	-	0.1	-	-	-	-	0.2	0.2	-	-	Ĩ
Copper (Cu)	μg/L	< 0.6	-	-	-	-	1.1	-	-	-	-	< 0.6	1	-	-	1
Iron (Fe)	μg/L	940	-	-	-	-	480	-	-	-	-	820	890	-	-	[
Lead (Pb)	μg/L	< 0.1	-	-	-	-	0.2	-	-	-	-	< 0.1	0.2	-	-	
Lithium (Li)	μg/L	5	-	-	-	-	7	-	-	-	-	8	7	-	-	Ĩ
Manganese (Mn)	μg/L	74	-	-	-	-	60	-	-	-	-	332	626	-	-	
Mercury (Hg)	μg/L	< 0.1	-	-	-	-	0.1	-	-	-	-	< 0.01	< 0.1	-	-	Ĩ
Molybdenum (Mo)	μg/L	0.2	-	-	-	-	< 0.9	-	-	-	-	0.1	< 0.1	-	-	
Nickel (Ni)	μg/L	< 0.7	-	-	-	-	0.9	-	-	-	-	0.9	3.3	-	-	
Selenium (Se)	μg/L	< 0.4	< 0.4	< 0.2	0.9	4	< 0.4	< 0.2	< 0.2	0.5	6	< 0.4	< 0.2	< 0.2	< 0.4	
Silver (Ag)	μg/L	< 0.2	-	-	-	-	< 0.2	-	-	-	-	< 0.2	< 0.2	-	-	
Strontium (Sr)	μg/L	55.7	-	-	-	-	118	-	-	-	-	121	147	-	-	
Titanium (Ti)	μg/L	0.4	-	-	-	-	< 0.3	-	-	-	-	0.3	< 0.3	-	-	
Uranium (U)	μg/L	< 0.1	-	-	-	-	< 0.1	-	-	-	-	< 0.1	< 0.1	-	-	
Vanadium (V)	µg/L	0.2	-	-	-	-	0.1	-	-	-	-	< 0.1	< 0.1	-		1
Zinc (Zn)	µg/L	6	-	-	-	-	9	-	-	-	-	2	10	-	-	-

Based on information from R.L.&L. (1989), Golder (1999a) and NAQUADAT station AB07DA0440.

Table II-8. Water Quality in Tributaries of the Lower Muskeg River

		Alsands	Drain		Jackn	ine Creek	(Fall)		Shelley	Stanley	Creek
Domoniston	T.I	(Fa	F				976 - 1997) ⁽	(a)	Creek	(Fa	
Parameter	Units	(Fa 1999	n) 1997	1999					(Fall 1999)	(ra 1999	1976 ^(b)
T2-11		1999	1997	1999	median	min	max	count	(Fall 1999)	1999	25.0
Field measured		7.9	7.5	7.8	8.2	7.8	8.3	3	7.2	9.2	7.7
pH Specific Conductores		887	629		220	7.8	8.3	3	1172	9.2	7.7
Specific Conductance	μS/cm °C		029	413		-	-	-		-	
Temperature	-	3.5	-	3.6	6.5	0.0	11.4	14	4.3	2.2	10.0
Dissolved Oxygen	mg/L	12.8	-	10.4	9.6	6.3	12.6	14	0.9	7.6	9.3
Conventional Parameters and Majo		20.4	202	27.6		100		-	(22)		
Bicarbonate (HCO3)	mg/L	396	302	276	141	102	514	5	432	-	
Calcium Carbonate (CO3)	mg/L	171	109	57	27	19	119	17	84	-	44
	mg/L	< 5	< 5	-	< 0.5	0	< 5	5	-	-	0.4
Chloride	mg/L	1	2	5.6	2	1	16		80	-	0.4
Colour	T.C.U.	30	60	49	118	35	150	10	165	-	216
Conductance	μS/cm	934	629	413	200	120	551	16	1172	-	315
Dissolved Organic Carbon	mg/L	12	18	19	25	18	36	11	29	-	150
Hardness	mg/L	523 23	335 15	200	103	77	362 16	9 17	265 14	-	152
Magnesium	mg/L	8.0	15 7.5	14 7.9	8 7.6	6 7.3	16 7.9	17	7.2	-	10
pH Bataasium	та с / Т		2.4		0.7	0.2	3.5	10	3.1	-	0.7
Potassium	mg/L	2.1		1.4				17		-	
Sodium	mg/L		7	18	12	9	36 10	17	96 10	-	2
Sulphate	mg/L	205	102		4	0.1	10			-	1
Sulphide	µg/L	4	8.5	6	6	-	422	1	53	3	- 154
Total Alkalinity	mg/L	324	247	227	111	80		17	354	-	156
Total Dissolved Solids	mg/L	700	440	234	126	94	466	17	500	-	167
Total Organic Carbon	mg/L	14	22	18	26 5	24	40	14 17	33 39	16	11
Total Suspended Solids Nutrients	mg/L	12	4	8	3	< 0.4	52	17	39	-	35
Nitrate + Nitrite	mg/L	< 0.1	< 0.05	< 0.1	< 0.003	< 0.002	< 0.05	5	< 0.1	< 0.1	
Nitrogen - Ammonia	mg/L	< 0.1	< 0.03	< 0.1	< 0.003	< 0.002	< 0.05	3	0.6	< 0.05	
Nitrogen - Kjeldahl	mg/L	1.4	1.3	0.7	0.03	0.01	3.4	12	3.8	0.5	1.5
Phosphorus, Total	μg/L	1.4	1.3	42	25	10	5.4 60	12	3.8	26	245
Phosphorus, Total Dissolved	μg/L μg/L	5	8	42	14	10	00	17	36	12	243
Biochemical Oxygen Demand	µg/L	5	0	14	14	-	-	1	50	12	
Biochemical Oxygen Demand	mg/L	< 2	6	< 2	1	0.6	3	3	7	< 2	
Toxicity	ing/L	< 2	0	< 2	1	0.0	5	5	1	< 2	
Microtox IC50 @ 15 min	%	> 91	> 91	> 91	_	> 91	> 91	2	> 91	> 91	
Microtox IC25 @ 15 min	%	> 91	> 91	> 91	-	> 91	> 91	2	> 91	> 91	
Organics	70	7 71	7 71	/ /1		/ /1	/ /1	2	7.71	/ /1	
Naphthenic acids	mg/L	1	1	< 1	-	0	< 1	2	1	< 1	
Total Phenolics	μg/L	4	4	4	-	< 1	1	2	2	2	
Total Recoverable Hydrocarbons	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	0.4	< 1	3	1.1	0.8	
Metals (Total)	8							-			
Aluminum (Al)	μg/L	440	35	120	51	< 10	200	12	60	20	55
Antimony (Sb)	μg/L	< 0.8	< 0.4	< 0.8	-	< 0.2	0.4	2	< 0.8	< 0.8	
Arsenic (As)	μg/L μg/L	< 1	< 0.4	< 1	0.5	0.2	< 5	5	< 1	< 1	< 1
Barium (Ba)	μg/L μg/L	189	118	49	-	18	20	2	175	37	
Beryllium (Be)	μg/L	< 1	< 1	< 1	-	< 1	1	2	< 1	< 1	
Boron (B)	μg/L μg/L	56	53	66	30	30	39	3	169	18	
Cadmium (Cd)	μg/L	< 0.2	< 0.2	< 0.2	< 1	< 0.2	4	3	< 0.2	< 0.2	
Calcium (Ca)	μg/L	171000	108850	55800	20600	-	-	1	79800	37800	
Chromium (Cr)	μg/L μg/L	< 0.8	< 0.4	< 0.8	1.5	< 1	12	3	1.2	< 0.8	
Cobalt (Co)	μg/L μg/L	0.5	0.6	0.3		1.4	9	2	1.2	< 0.2	
Copper (Cu)	μg/L μg/L	2	2.6	< 1	< 1	< 1	3.8	3	< 1	< 1	
Iron (Fe)	μg/L μg/L	1460	700	1570	580	570	1120	3	5300	290	
Lead (Pb)	μg/L μg/L	0.9	0.3	< 0.1	< 2	1.2	< 20	3	< 0.1	< 0.1	

Table II-8. Water Quality in Tributaries of the Lower Muskeg River

		Alsands	Drain			ine Creek (Shelley	Stanley	Creek
Parameter	Units	(Fa	II)		Hi	storical (19	976 - 1997) ⁽	a)	Creek	(Fa	all)
		1999	1997	1999	median	min	max	count	(Fall 1999)	1999	1976 ^(b)
Lithium (Li)	μg/L	109	9	79	-	8	9	2	134	78	-
Magnesium (Mg)	μg/L	24100	15500	14900	6390	-	-	1	14300	10100	-
Manganese (Mn)	μg/L	253	244	58	16	4	21	3	1630	23.1	
Mercury (Hg)	μg/L	< 0.2	< 0.1	< 0.2	< 0.1	< 0.05	0.3	13	< 0.2	< 0.2	< 0.2
Molybdenum (Mo)	μg/L	0.3	< 0.1	0.1	-	0.2	3.0	2	0.1	< 0.1	
Nickel (Ni)	μg/L	3.5	0.4	1.6	< 2.5	< 1	< 5	3	1.7	0.4	-
Potassium (K)	µg/L	2510	2495	1550	1020	-	-	1	3380	1180	-
Selenium (Se)	μg/L	< 0.8	< 0.4	< 0.8	< 0.2	< 0.2	< 0.4	3	< 0.8	< 0.8	-
Silver (Ag)	µg/L	< 0.4	< 0.1	< 0.4	-	< 0.1	5	2	< 0.4	< 0.4	-
Sodium (Na)	µg/L	7700	7000	17100	9500	-	-	1	97100	24100	-
Strontium (Sr)	µg/L	293	225	171	-	77.7	94	2	435	75	-
Titanium (Ti)	μg/L	13	1	3	8	1	< 50	3	4	< 0.6	-
Uranium (U)	µg/L	0.5	< 0.1	0.1	-	< 0.1	< 500	2	< 0.1	< 0.1	-
Vanadium (V)	μg/L	1.8	0.2	0.8	< 1.8	< 1	< 2	3	1.7	< 0.2	-
Zinc (Zn)	µg/L	11	10	7	26	2	186	3	5	4	-
Metals (Dissolved)	10										
Aluminum (Al)	μg/L	< 10	-	< 10	58	-	-	1	< 10	20	-
Antimony (Sb)	μg/L	< 0.8	-	< 0.8	< 0.4	-	-	1	< 0.8	< 0.8	
Arsenic (As)	μg/L	< 0.4	-	< 0.4	0.35	< 0.2	1.1	10	< 0.4	< 0.4	
Barium (Ba)	μg/L	162	-	44	17	-	-	1	107	39	
Beryllium (Be)	μg/L	< 0.5	-	< 0.5	< 0.5	-	-	1	< 0.5	< 0.5	
Boron (B)	μg/L	45	-	54	110	40	480	11	166	17	65
Cadmium (Cd)	μg/L	< 0.1	-	< 0.1	< 0.1	-	-	1	< 0.1	< 0.1	
Chromium (Cr)	μg/L	< 0.4	-	< 0.4	< 3	< 0.4	8.0	11	< 0.4	< 0.4	< 3
Cobalt (Co)	μg/L	0.3	-	0.2	0.2	-	-	1	0.9	< 0.1	
Copper (Cu)	μg/L	0.8	-	< 0.6	2.2	-	-	1	0.7	1.2	
Iron (Fe)	μg/L	540	-	280	340	-	-	1	1610	240	-
Lead (Pb)	μg/L	< 0.1	-	< 0.1	0.7	-	-	1	< 0.1	< 0.1	
Lithium (Li)	μg/L	21	-	23	8	-	-	1	55	15	
Manganese (Mn)	μg/L	254	-	49	44	-	-	1	1630	22	
Mercury (Hg)	μg/L	< 0.1	-	< 0.01	< 0.2	-	-	1	< 0.01	< 0.01	
Molybdenum (Mo)	μg/L	0.2	-	< 0.1	0.1	-	-	1	< 0.1	0.2	-
Nickel (Ni)	μg/L	3.3	-	1.2	0.2	-	-	1	1.4	0.2	
Selenium (Se)	μg/L	< 0.4	-	< 0.4	< 0.2	< 0.1	< 0.4	8	< 0.4	< 0.4	
Silver (Ag)	μg/L	< 0.2	-	< 0.2	< 0.2		-	1	< 0.2	< 0.2	
Strontium (Sr)	μg/L	304	-	180	71	_	_	1	405	77	
Titanium (Ti)	μg/L	1.3	_	< 0.3	0.4	_	_	1	0.9	2.3	
Uranium (U)	μg/L	0.5	_	< 0.1	< 0.05	_	_	1	< 0.1	< 0.1	
Vanadium (V)	μg/L μg/L	< 0.1	_	0.3	0.3	_	_	1	0.7	0.3	<u> </u>
Zinc (Zn)	μg/L μg/L	4		2	16	_	_	1	< 2	3	

^(a) Based on information from Golder (1996a, 1998b), R.L.&L. (1982, 1989) and NAQUADAT stations AB07DA0600.

 $^{\rm (b)}$ Based on information from NAQUADAT station AB07DA0490 (n=2).

Table II-9. Water Quality in Tributaries of the Upper Muskeg River

										v	Vapasu	ı Creek				
D	T.		Musk	eg Creek (l	Fall)			1	Winter				-	Fall		
Parameter	Units		Н	istorical (1	976-1998) ⁽	b)		His	torical (198	85-1988) ^(b)			His	torical (197	6-1988) ^(c)	
		1999	median	min	max	count	1999	median	min	max	n	1999	median	min	max	n
Field measured																
рН		7.6	7.7	7.3	7.8	5	7.8	8.0	-	-	1	8.2	7.6	7.4	7.9	4
Specific Conductance	$\mu S/cm$	585	192	80	240	5	572	-	-	-	-	318	-	190	234	2
Temperature	°C	2.8	5.0	0.0	13.0	9	0.4	0.0	0.0	0.5	5	4.0	3.0	0.0	10.0	6
Dissolved Oxygen	mg/L	7.2	10.7	4.4	14.5	8	4.3	9.0	-	-	1	8.6	11.6	5.0	14.4	5
Conventional Parameters and Major Ions							1							I		
Bicarbonate (HCO3)	mg/L	362	130	119	382	6		-	229	356	2	215	140	122	154	4
Calcium	mg/L	66	22	19	71	11	78	65	41	72	6	44	29	25	47	6
Carbonate (CO3)	mg/L	-	< 0.5	< 0.5	< 5	4		< 5	-	-	1	< 5	-	< 0.5	< 0.5	2
Chloride	mg/L	23.1	1.3	0.3	36	11	1.0	1.7	1.4	2.7	6	2.0	1.2	0.7	2.2	6
Colour	T.C.U.	68	150	120	200	5	25	-	60	100	2	60	-	100	100	2
Conductance	µS/cm	585	226	192	671	6		425	310	524	6	339	240	210	310	4
Dissolved Organic Carbon	mg/L	21	25	6	31	6		31	11	37	5	18	13	-	-	1
Hardness	mg/L	237	83	76	244	11	311	222	154	282	6	172	112	97	159	6
Magnesium	mg/L	17	7 7.4	7	16	11	28	15 7.1	13	25 7.4	6	15 7.7	10	8	10	6
pH Potassium	тал	7.8	0.9	7.2	8.1	11	7.4	7.1	6.9 1.1	7.4	5	1.0	- 0.9	7.1	1.2	2
Potassium Sodium	mg/L	2.1	16	0.5	64	11	1.5	1.4	1.1	1.5	6	1.0		0.4	1.2	6
Sulphate	mg/L mg/L	44 0	3	0	64	11	/ 8	9	5	18	6	5	2	3	10	0 4
Sulphide	μg/L	4	< 2	1	,	1	< 3	5	5	0	1	< 3	2	1	5	
Total Alkalinity	mg/L	297	110	- 98	313	11	327	231	173	292	6	176	119	100	165	6
Total Dissolved Solids	mg/L	339	127	106	378	11	350	266	189	300	6	240	130	105	186	6
Total Organic Carbon	mg/L	21	30	26	53	10		33	14	45	6	22	24	20	33	6
Total Suspended Solids	mg/L	7	1	1	9	11	7	23	5	59	6	3	7	1	22.4	6
Nutrients and Chlorophyll a	Ũ															
Nitrate + Nitrite	mg/L	< 0.1	0.012	< 0.003	< 0.05	6	< 0.1	-	< 0.1	0.10	2	< 0.1	0.01	0.003	0.01	4
Nitrogen - Ammonia	mg/L	0.07	0.04	0.03	0.28	5	0.34	-	0.2	0.22	2	< 0.05	0.07	0.02	0.09	4
Nitrogen - Kjeldahl	mg/L	1.0	0.8	0.5	1.3	10	0.5	1.8	0.4	2.6	6	0.9	1.0	0.4	2.1	6
Phosphorus, Total	μg/L	42	34	16	66	11	96	200	59	340	6	20	37	22	180	6
Phosphorus, Total Dissolved	μg/L	14	30	-	-	1	10	16	-	-	1	14		-	-	-
Chlorophyll a	μg/L	-	< 1	0	< 1	5	7	< 1	-	-	1	-	-	< 1	2	2
Biochemical Oxygen Demand																
Biochemical Oxygen Demand	mg/L	< 2	2	0.2	8	5	2	-	2	< 2	2	< 2	2	1	3	4
Toxicity														r		
Microtox IC50 @ 15 min	%	> 91	> 91	> 91	> 100	3		> 91	-	-	1	> 91	-	-	-	-
Microtox IC25 @ 15 min	%	> 91	> 91	> 91	> 100	3		> 91	-	-	1	> 91	-	-	-	-
Algal Growth Inhibition Test (72 h) - IC25	%	-	-	-	-	-	> 100	-	-	-	-	-	-	-	-	-
Algal Growth Inhibition Test (72 h) - IC50	%	-	-	-	-	-	> 100	-	-	-	-	-	-	-	-	-
Algal Growth Inhibition Test (72 h) - LOEC	%	-	-	-	-	-	> 100	-	-	-	-	-	-	-	-	-
Algal Growth Inhibition Test (72 h) - NOEC	%	-	-	-	-	-	100	-	-	-	-	-	-	-	-	-
Ceriodaphnia 7 d Mortality Test - LC25	%	-	> 100	-	-	1	> 100	> 100	-	-	1	-	-	-	-	
Ceriodaphnia 7 d Mortality Test - LC50 Ceriodaphnia 7 d Mortality Test - LOEC	%	-	> 100 > 100	-	-	1	> 100 > 100	> 100 > 100	-	-	1	-	-	-	-	
Ceriodaphnia / d Mortality Test - LOEC Ceriodaphnia 7 d Mortality Test - NOEC	%	-	> 100	-	-	1	> 100	> 100	-	-	1	-	-	-	-	
Ceriodaphnia 7 d Reproduction Test - IC25	%	-	100	-	-	1	> 100	> 100	-	-	1	-	-	-	-	
Ceriodaphnia 7 d Reproduction Test - IC25	%	-	56	-	-	1	> 100	> 100	-	_	1	-		-	-	
Ceriodaphnia 7 d Reproduction Test - LOEC	%		25			1	> 100	> 100		_	1	-	-	-	-	<u> </u>
Ceriodaphnia 7 d Reproduction Test - NOEC	%	-	12.5	-	-	1	100	100	-	-	1	-	-	-	-	-
Fathead Minnow 7d Growth - IC25	%	-		-	-	-	> 100	> 100	-	-	1	-	-	-	-	-
Fathead Minnow 7d Growth - IC50	%	-	-	-	-	-	> 100	> 100	-	-	1	-	-	-	-	-
Fathead Minnow 7d Growth - LOEC	%	-	-	-	-	-	> 100	> 100	-	-	1	-	-	-	-	-
Fathead Minnow 7d Growth - NOEC	%	-	-	-	-	-	100	100	-	-	1	-	-	-	-	-
Fathead Minnow 7d Mortality Test - LC25	%	-	-	-	-	-	> 100	92	-	-	1	-	-	-	-	-
Fathead Minnow 7d Mortality Test - LC50	%	-	-	-	-	-	> 100	> 100	-	-	1	-	-	-	-	-
Fathead Minnow 7d Mortality Test - LOEC	%	-	-	-	-	-	> 100	100	-	-	1	-	-	-	-	-
Fathead Minnow 7d Mortality Test - NOEC	%	-		-	-	-	100	50	-		1	-	-	-	-	-
Organics																
Naphthenic acids	mg/L	2	-	< 1	< 1	2	< 1	< 1	-	-	1	< 1	-	-	-	-
Total Phenolics	μg/L	5	5	-	-	1	6	6	-	-	1	2	-	-	-	-
Total Recoverable Hydrocarbons	mg/L	0.8	0.5	< 0.1	< 1	6	< 0.5	-	< 0.5	0.6	2	1.1	0.2	< 0.1	1.7	4

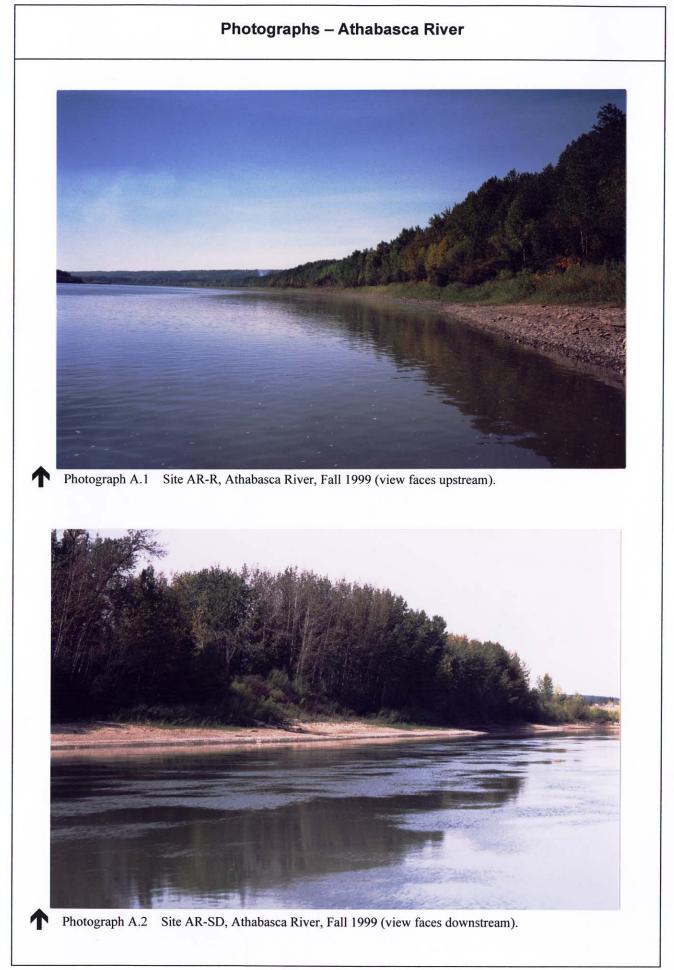
Table II-9. Water Quality in Tributaries of the Upper Muskeg River

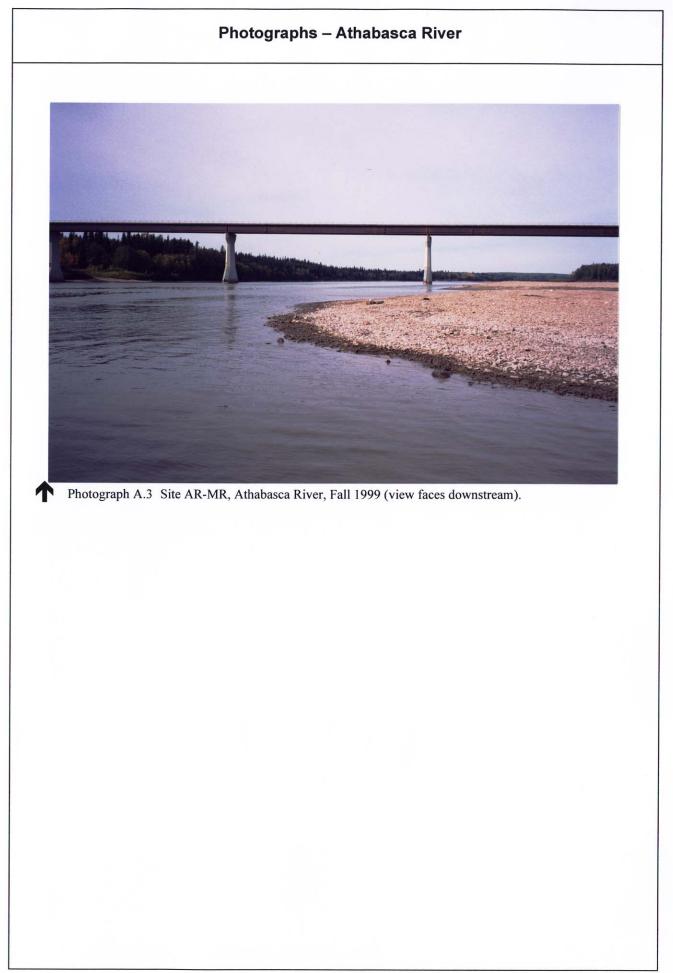
										v	Vapasu	Creek				
D	** **		Musk	eg Creek (l	Fall)			,	Winter					Fall		
Parameter	Units		Н	istorical (1	976-1998) ⁽	b)		Hist	torical (198	85-1988) ^(b)			His	torical (197	6-1988) ^(c)	
		1999	median	min	max	count	1999	median	min	max	n	1999	median	min	max	n
Metals (Total)																
Aluminum (Al)	μg/L	70	20	< 10	50	11	120	35	< 10	90	6	20	20	< 10	40	6
Antimony (Sb)	µg/L	< 0.8	< 0.8	-	-	1	< 0.8	< 0.8	-	-	1	< 0.8	-	-	-	-
Arsenic (As)	µg/L	< 1	0.7	0.2	12	8	< 1	-	0.4	< 1	2	< 1	0.7	0.2	< 5	5
Barium (Ba)	µg/L	51	-	40	67	2	66	59	-	-	1	29	-	-	-	-
Beryllium (Be)	μg/L	< 1	-	< 1	< 1	2	< 1	< 1	-	-	1	< 1	-	-	-	-
Boron (B)	μg/L	86	55	< 10	150	6	31	-	70	81	2	14	45	< 10	50	4
Cadmium (Cd)	µg/L	< 0.2	< 1	< 0.2	< 3	6	< 0.2	-	< 0.2	< 1	2	< 0.2	< 1	< 1	< 1	4
Calcium (Ca)	µg/L	67200	72500	-	-	1	76000	75500	-	-	1	46600	-	-	-	-
Chromium (Cr)	μg/L	< 0.8	1	< 0.8	11	6	< 0.8	-	1	2.4	2	< 0.8	< 1	< 1	< 1	4
Cobalt (Co)	μg/L	0.4	-	0.4	6	2	0.7	2.7	-	-	1	< 0.2	-	-	-	-
Copper (Cu)	μg/L	< 1	< 1	< 1	< 1	6	< 1	-	< 1	2	2	< 1	< 1	< 1	< 1	4
Iron (Fe)	μg/L	1810	395	250	1750	6	2370	-	1820	2070	2	600	945	270	1800	4
Lead (Pb)	μg/L	< 0.1	< 2	0.2	20	6	0.6	-	1	< 2	2	< 0.1	< 2	< 2	< 2	4
Lithium (Li)	μg/L	95	-	7	28	2	9	11	-	-	1	7	-	-	-	-
Magnesium (Mg)	μg/L	19000	16000	-	-	1	27620	24400	-	-	1	15900	-	-	-	-
Manganese (Mn)	µg/L	350	21	13	534	6	697	-	540	870	2	74	63	27	96	4
Mercury (Hg)	µg/L	< 0.2	< 0.1	< 0.05	1.2	10	< 0.2	< 0.1	< 0.1	0.4	6	< 0.2	< 0.1	< 0.05	< 0.2	6
Molybdenum (Mo)	µg/L	< 0.1	-	< 0.1	< 3	2	< 0.1	0.4	-	-	1	< 0.1	-	-	-	-
Nickel (Ni)	µg/L	1.6	< 1	< 1	10	6	3	-	< 1	4.1	2	2	< 1	< 1	< 1	4
Potassium (K)	µg/L	2360	2160	-	-	1	840	2140	-	-	1	1110	-	-	-	-
Selenium (Se)	µg/L	< 0.8	0.7	< 0.2	0.8	5	< 0.8	-	0.6	< 0.8	2	< 0.8	0.4	< 0.2	0.8	4
Silver (Ag)	µg/L	< 0.4	-	< 0.4	3	2	< 0.4	< 0.4	-	-	1	< 0.4	-	-	-	-
Sodium (Na)	μg/L	46900	63000	-	-	1	5400	8800	-	-	1	6100	-	-	-	-
Strontium (Sr)	µg/L	243	-	89	296	2	93	130	-	-	1	96	-	-	-	-
Titanium (Ti)	µg/L	1.7	7	1.5	< 50	3	2.2	2.2	-	-	1	< 0.6	-	-	-	-
Uranium (U)	µg/L	0.1	-	0.2	< 500	2	0.1	0.1	-	-	1	< 0.1	-	-	-	-
Vanadium (V)	µg/L	0.8	< 1	0.4	< 2	6	< 0.2	-	0.2	< 1	2	< 0.2	< 1	< 1	< 1	4
Zinc (Zn)	μg/L	7	4	2	24	6	4	-	5	14	2	< 4	4	2	16	4
Metals (Dissolved)																
Aluminum (Al)	μg/L	< 10	30	-	-	1	30	50	-	-	1	< 10	-	-	-	-
Antimony (Sb)	µg/L	< 0.8	< 0.8	-	-	1	< 0.8	< 0.8	-	-	1	< 0.8	-	-	-	-
Arsenic (As)	μg/L	< 0.4	< 0.5	< 0.2	< 1	3	< 0.4	< 1	< 0.4	< 1	5	< 0.4	< 1	-	-	1
Barium (Ba)	µg/L	48	63	-	-	1	59	53.2	-	-	1	28	-	-	-	-
Beryllium (Be)	µg/L	< 0.5	< 0.5	-	-	1	< 0.5	< 0.5	-	-	1	< 0.5	-	-	-	-
Boron (B)	µg/L	108	90	40	170	6	35	80	< 2	300	5	14	-	60	130	2
Cadmium (Cd)	μg/L	< 0.1	< 0.1	-	-	1	< 0.1	0.1	-	-	1	< 0.1	-	-	-	-
Chromium (Cr)	μg/L	< 0.4	< 3	0.8	< 3	6	< 0.4	< 3	< 0.4	6	5	< 0.4	-	< 3	< 3	2
Cobalt (Co)	µg/L	0.3	0.7	-	-	1	2.3	2.8	-	-	1	0.2	-	-	-	-
Copper (Cu)	µg/L	< 0.6	0.7	-	-	1	0.7	2.6	-	-	1	< 0.6	-	-	-	-
Iron (Fe)	μg/L	350	1020	-	-	1	400	1130	-	-	1	420	-	-	-	-
Lead (Pb)	μg/L	< 0.1	0.1	-	-	1	0.2	0.8	-	-	1	< 0.1	-	-	-	-
Lithium (Li)	μg/L	33	26	-	-	1	9	7	-	-	1	7	-	-	-	-
Manganese (Mn)	µg/L	319	522	-	-	1	718	866	-	-	1	70	-	-	-	-
Mercury (Hg)	µg/L	< 0.01	< 0.1	-	-	1	< 0.1	< 0.1	-	-	1	< 0.01	-	-	-	-
Molybdenum (Mo)	µg/L	< 0.1	< 0.1	-	-	1	< 0.1	< 0.1	-	-	1	< 0.1	-	-	-	-
Nickel (Ni)	μg/L	1.1	3.5	-	-	1	2.9	3.3	-	-	1	0.7	-	-	-	-
Selenium (Se)	μg/L	< 0.4	< 0.4	< 0.2	1.2	3	< 0.4	< 0.5	< 0.4	< 0.5	5	< 0.4	< 0.5	-	-	1
Silver (Ag)	μg/L	< 0.2	< 0.2	-	-	1	< 0.2	< 0.2	-	-	1	< 0.2	-	-	-	<u> </u>
Strontium (Sr)	μg/L	250	274	-	-	1	110	123	-	-	1	96	-	-	-	<u> </u>
Titanium (Ti)	μg/L	0.7	0.5	-	-	1	1.6	0.6	-	_	1	< 0.3	-	-	-	<u>t .</u>
Uranium (U)	μg/L	0.2	0.2	_	-	1	0.1	0.1	-	_	1	< 0.1	-	-	-	<u> </u>
Vanadium (V)	μg/L μg/L	0.2	< 0.1			1	< 0.1	< 0.1	-		1	< 0.1		-	-	Η.
Zinc (Zn)	μg/L μg/L	2	4		-	1	5	12	-	_	1	< 2			-	.

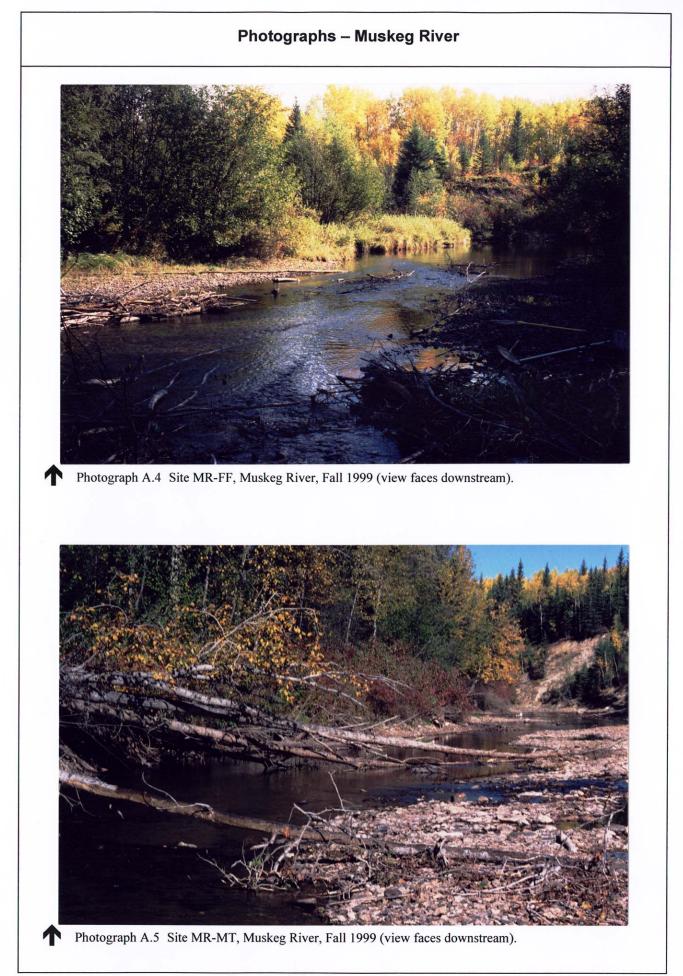
(a) Based on information from Golder (1996a, 1999a), R.L.&L. (1989) and NAQUADAT stations AB07DA0500/530.

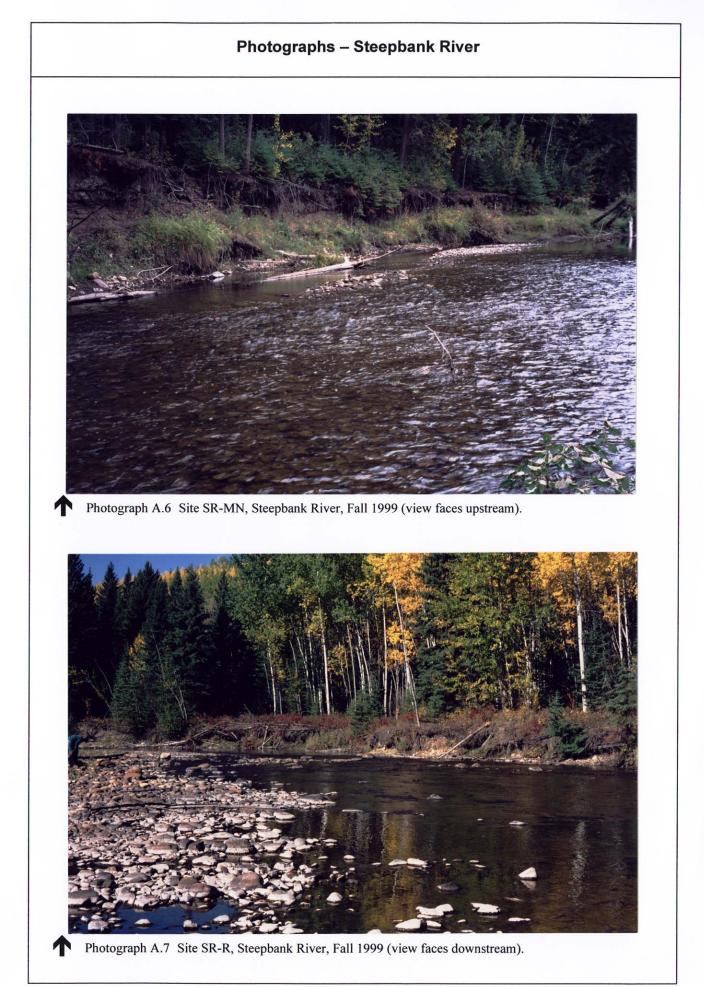
^(b) Based on information from Golder (1999a), R.L.&L. (1989) and NAQUADAT station AB07DA0480.

^(c) Based on information from R.L.&L. (1989) and NAQUADAT station AB07DA0480.


			Field b	olanks			Trip	blanks		Lab b	lanks
Parameter	Units	winter	spring	summer	fall	winter	spring	summer	fall	spring	summer
Conventional Parameters					•						•
bicarbonate	mg/L	7	< 5	< 5	< 5	8	< 5	< 5	-	-	-
calcium	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5
carbonate	mg/L	< 5	< 5	< 5	< 5	< 5	< 5	< 5	-	-	-
chloride	mg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	-	< 1	< 1
colour	T.C.U.	3	10	< 3	8	3	5	< 3	-	< 3	< 3
conductance	µS/cm	2.7	2.8	5.8	1.8	3.7	4.1	1.4	-	-	-
dissolved organic carbon	mg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	-	< 1	< 1
hardness	mg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	-	< 1	< 1
magnesium	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-	< 0.1	< 0.1
рН		5.9	5.3	5.8	5.5	6.1	6.2	5.5	-	-	-
potassium	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-	< 0.1	< 0.1
sodium	mg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	-	< 1	< 1
sulphate	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5
sulphide	mg/L	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
total alkalinity	mg/L	6	< 5	< 5	< 5	7	< 5	< 5	-	-	-
total dissolved solids	mg/L	< 10	20	10	< 10	< 10	20	< 10	-	< 10	< 10
total organic carbon	mg/L	1	1	< 1	< 1	1	< 1	< 1	< 1	< 1	< 1
total suspended solids	mg/L	< 3	< 3	< 3	< 3	< 3	10	< 3	-	< 3	< 3
Nutrients			n	1	1	n	1	1	1		1
nitrate + nitrite	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
nitrogen - ammonia	mg/L	< 0.05	-	< 0.05	< 0.05	< 0.05	-	< 0.05	< 0.05	< 0.05	< 0.05
nitrogen - kjeldahl	mg/L	< 0.2	-	0.3	< 0.2	< 0.2	-	0.3	< 0.2	< 0.2	0.2
phosphorus, total	μg/L	< 2	-	< 1	< 1	< 2	< 1	< 1	6	< 1	< 1
phosphorus,total dissolved	μg/L	< 2	< 1	1	< 1	< 2	< 1	< 1	< 1	< 1	2
General Organics and Toxicity			0	1	1	0	1	1	1		
biochemical oxygen demand	mg/L	-	3	< 2	< 2	-	< 2	< 2	< 2	< 2	< 2
chlorophyll "a"	μg/L	-	67	3	3	-	13	1	11	-	-
Microtox IC50 @ 15 min	%	-	> 91	> 91	> 91	-	> 91	> 91	> 91	-	-
Microtox IC25 @ 15 min	%	-	> 91	> 91	> 91	-	> 91	> 91	> 91	-	-
naphthenic acids	mg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
total phenolics	μg/L	< 1	< 1	1	1	< 1	3	< 1	2	< 1	< 1
total recoverable hydrocarbons	mg/L	< 0.5	< 0.5	1.2	2.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	12.1
Metals (Total)	a	20	20	00	20	1.10	20	10	50	20	70
aluminum (Al)	μg/L	30	30	80	< 20	440	20	40	60	< 20	70
antimony (Sb)	µg/L	< 0.8	3.6	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
arsenic (As)	µg/L	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
barium (Ba)	μg/L	4.3	0.9	0.7	0.7	14.4	0.9	0.5	0.4	0.5	< 0.2
beryllium (Be)	μg/L	< 1 < 4		< 1 < 4	< 1	< 1	< 1 < 4	< 1 11	< 1 < 4	< 1	< 1
boron (B) cadmium (Cd)	μg/L	< 0.2	< 4	< 4	< 4 < 0.2	< 4 < 0.2	< 0.2	< 0.2	< 0.2	< 4	< 0.2
calcium (Ca)	μg/L μg/I	3700	< 0.2	< 100	200	< 0.2	< 0.2	100	< 0.2	< 100	< 0.2
chromium (Cr)	μg/L μg/L	7.8	< 0.8	< 0.8	< 0.8	8.1	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
cobalt (Co)	μg/L μg/L	< 0.2	< 0.8	< 0.8	< 0.8	< 0.2	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
copper (Cu)	μg/L μg/L	8	1	1	1	2	< 0.2	< 0.2	1	< 0.2	2
iron (Fe)	μg/L μg/L	30	130	20	< 20	90	< 20	< 20	180	90	30
lead (Pb)	μg/L μg/L	3.5	0.6	0.2	< 0.1	0.3	< 0.1	< 0.1	< 0.1	< 0.1	0.2
lithium (Li)	μg/L μg/L	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6
magnesium (Mg)	μg/L μg/L	780	40	20	40	50	< 20	40	< 20	< 20	< 20
manganese (Mn)	μg/L	3.6	1.1	11.1	< 0.2	2.4	0.2	127	0.4	0.2	8.1
mercury (Hg)	μg/L	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
molybdenum (Mo)	μg/L	0.6	< 0.1	< 0.1	< 0.1	0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
nickel (Ni)	μg/L μg/L	6.3	1.1	< 0.2	< 0.2	5	< 0.2	< 0.2	0.7	0.4	2.5
potassium (K)	μg/L	430	< 20	< 20	80	610	80	< 20	50	< 20	< 20
selenium (Se)	μg/L	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
silver (Ag)	μg/L	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	5.9	< 0.4
sodium (Na)	μg/L	1000	< 200	< 200	< 200	300	< 200	< 200	< 200	< 200	< 200
strontium (Sr)	μg/L	24	1	0.2	0.5	0.9	< 0.2	0.3	< 0.2	< 0.2	< 0.2
titanium (Ti)	μg/L	1.2	< 0.6	< 0.6	< 0.6	3.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
uranium (U)	μg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
vanadium (V)	μg/L	< 0.2	< 0.2	0.5	< 0.2	1.1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
zinc (Zn)	μg/L	4	16	21	< 4	16	7	< 4	< 4	18	24
	1.0	· · ·					·		· · · · ·		· · · · · · · · · · · · · · · · · · ·


Demonster	TI		Field l	olanks			Trip	blanks		Lab b	olanks
Parameter	Units	winter	spring	summer	fall	winter	spring	summer	fall	spring	summer
Metals (Dissolved)											
aluminum (Al)	μg/L	30	20	20	< 10	10	-	-	-	< 10	< 10
antimony (Sb)	μg/L	< 0.8	0.9	< 0.8	1.0	< 0.8	-	-	-	< 0.8	< 0.8
arsenic (As)	μg/L	< 0.4	< 0.4	2.0	< 0.4	< 0.4	-	-	-	< 0.4	< 0.4
barium (Ba)	μg/L	2.3	< 0.1	0.5	0.1	0.2	-	-	-	< 0.1	< 0.1
beryllium (Be)	μg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	< 0.5	< 0.5
boron (B)	μg/L	< 2	3	< 2	3	< 2	-	-	-	12	2
cadmium (Cd)	μg/L	0.2	< 0.1	< 0.1	< 0.1	< 0.1	-	-	-	< 0.1	< 0.1
chromium (Cr)	μg/L	7.6	< 0.4	< 0.4	< 0.4	< 0.4	-	-	-	< 0.4	< 0.4
cobalt (Co)	μg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-	-	-	< 0.1	< 0.1
copper (Cu)	μg/L	5.0	0.8	1.6	< 0.6	0.7	-	-	-	< 0.6	< 0.6
iron (Fe)	μg/L	< 10	20	< 10	30	< 10	-	-	-	< 10	10
lead (Pb)	μg/L	0.4	0.7	0.2	< 0.1	0.3	-	-	-	< 0.1	< 0.1
lithium (Li)	μg/L	< 3	< 3	< 3	< 3	< 3	-	-	-	< 3	< 3
manganese (Mn)	μg/L	3.0	0.6	10.3	< 0.1	1	-	-	-	< 0.1	< 0.1
mercury (Hg)	μg/L	< 0.1	0.1	0.3	< 0.01	< 0.1	-	-	< 0.01	0.2	< 0.1
molybdenum (Mo)	μg/L	0.6	< 0.1	0.9	< 0.1	< 0.1	-	-	-	< 0.1	< 0.1
nickel (Ni)	μg/L	6.3	0.7	< 0.1	< 0.1	0.3	-	-	-	< 0.1	< 0.1
selenium (Se)	μg/L	< 0.4	< 0.4	0.4	< 0.8	< 0.4	-	-	-	< 0.4	< 0.4
silver (Ag)	μg/L	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-	-	-	< 0.2	< 0.2
strontium (Sr)	μg/L	14	< 0.1	0.3	0.3	0.2	-	-	-	< 0.1	< 0.1
titanium (Ti)	μg/L	< 0.3	< 0.3	0.4	< 0.3	< 0.3	-	-	-	< 0.3	< 0.3
uranium (U)	μg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-	-	-	< 0.1	< 0.1
vanadium (V)	μg/L	< 0.1	0.2	0.2	< 0.1	< 0.1	-	-	-	0.3	0.2
zinc (Zn)	μg/L	4	13	7	< 2	3	-	-	-	23	7


- = No data.


APPENDIX III

PHOTOS OF SENTINEL FISH SAMPLING SITES, FALL 1999

APPENDIX IV

SENTINEL FISH SPECIES DATA

Legend

Sex: M = male F = female I = immature Maturity Stage: SD = seasonal development IM = immature MA = maturing

Mesenteric Fat: 0 = none 1 = < 50% of cecum covered 2 = 50% of cecum covered

								Total	Fork	Total	Caraass				Liver	Gonad			
											Carcass		Maturity				Fooundity	Mesentaric	
								Length	Length	Weight	Weight				Weight	Weight	Fecundity		
Date	Year	Season	Waterbody	Location	Site	Species	Fish #	(cm)	(cm)	(g)	(g)	Sex	Stage	Age	(g)	(g)	(# eggs)	Fat	External Pathology
13/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		1		4.8	1.30		1			0.010				
13/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		2		4.5	0.99		Т			0.010				
13/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	3		6.4	2.85		F		2	0.050	0.120			
13/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	4		4.4	0.94		1							
13/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	5		4.6	1.05		Т							
13/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	6		4.8	1.32		1							
13/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	7		6.8	3.58	3.04	F	SD	3	0.062	0.173		1	
13/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	8		6.9	3.72	3.12	F	SD	2	0.066	0.187		1	
13/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	9		5.1	1.50	1.30	Т	SD	0	0.019			0	
13/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	10	4.7	4.2	0.85	0.61	Τ	IM	0	0.019			0	
13/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	11	5.7	5.1	1.51	1.35	Т	SD	0	0.018			1	
13/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	12	9.5	8.5	5.75	4.98	F	SD	2	0.086	0.272		1	
13/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	13	5.6	5.0	1.36	1.18		IM	1	0.013	0.010		1	
13/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	14	5.1	4.6	0.99	0.89		IM	0	0.011			0	
13/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		15	5.4	4.8	1.24	1.11	· ·	IM	0	0.014	0.013		1	
13/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		17	5.8	5.2	1.60	1.38	<u> </u>	IM	1	0.014	0.015		1	
13/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		18	5.6	5.0	1.00	1.13	<u> </u>	IM	1	0.015	0.006		1	
13/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		19	5.6	5.0	1.24	1.13	1	IM	1	0.013	0.006		1	
13/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		27	8.2	7.4	4.53	4.00	F	SD	3	0.018	0.006		1	
14/9/99	1999				ARSD								50			0.225		I	
		Fall Fall	Athabasca	Suncor Discharge	_		28	5.4 8.1	4.9	1.29	1.14	F		0	0.190	0.007			
14/9/99	1999		Athabasca	Suncor Discharge	ARSD		29		7.2	4.31	3.90	F		2	0.059				
14/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		30	7.5	6.8	3.30	3.00			2	0.040	0.040			
14/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		31	7.4	6.9	3.11	2.80	F		3	0.051	0.108			
14/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		32	7.9	7.0	3.40	3.17	М		3	0.037	0.050			
14/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		33	7.2	6.5	2.97	2.82	М		2	0.030	0.040			
14/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		34	6.6	5.9	2.41	2.13	М		1	0.034	0.046			
14/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		35	6.1	5.5	1.92	1.79	Т		1	0.030	0.028			
14/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		36	5.4	4.9	1.28	1.18	Т		0	0.017	0.006			
14/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	37	6.5	6.0	2.02	1.81	1		1	0.026	0.019			
14/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	38	5.4	5.0	1.33	1.21	1		1	0.019	0.011			
14/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	39	5.3	4.8	1.17	1.06	1		1	0.016	0.005			
14/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	40	5.8	5.3	1.59	1.40	М		1	0.026	0.027			
14/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	41	5.4	5.0	1.31	1.20	1		1	0.017	0.004			
14/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	42	6.1	5.7	1.69	1.50	М		1	0.017	0.015			
14/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	43	5.6	4.9	1.34	1.16	U		1	0.027				
14/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	44	8.0	7.1	4.82	4.16	М	SD	3	0.052	0.088		1	
14/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	45	7.4	6.6	3.33	2.96	М	SD	3	0.056	0.058		1	
14/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	46	7.3	6.6	3.37	3.01	М	SD	3	0.046	0.040		1	
14/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	47	7.3	6.4	3.05	2.65	М	SD	3	0.033	0.066		1	
14/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	48	6.7	6.1	2.62	2.33	М	SD	3	0.049	0.059		1	
14/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	49	5.7	5.2	1.72	1.40	1	MA	1	0.031	0.025		1	
14/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	50	4.9	4.5	0.96	0.83	· ·	IM	1	0.013	0.004		1	
14/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	51	5.4	4.9	1.34	1.18	· ·	IM	1	0.018			2	
14/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	52	5.5	4.8	1.34	1.10	· 1	IM	1	0.020	0.005		1	
14/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	53	5.0	4.7	0.99	0.88	· 	IM	1	0.003	0.005		1	
14/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		55	7.9	7.1	4.41	3.83	M	SD	3	0.003	0.003		2	
14/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		56	7.9	6.5	2.87	2.56	M	SD	2	0.033	0.073		1	
14/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		50	7.1	7.1	3.40	2.56	F	SD	2	0.033	0.056	769	1	
				-								F							
14/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		58	7.6	6.8	3.16	2.66		SD	2	0.059	0.116	536	1	
14/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		59	8.2	7.4	4.80	4.11	F	SD	3	0.180	0.248	0/2	_	
14/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		60	8.8	8.1	5.43	4.71	F	SD	3	0.087	0.269	819	0	
14/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		61	7.6	6.9	3.23	2.78	F	SD	3	0.067	0.144	600	1	
14/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		62	7.5	6.7	3.23	2.77	M	SD	2	0.043	0.065		1	
14/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		63	8.7	7.8	5.15	4.36	F	SD	3	0.133	0.267		1	
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	64	8.4	7.5	4.20	3.64	F	SD	3	0.081	0.214		1	

								Total	Fork	Total	Carcass				Liver	Gonad			
								Length	Length	Weight	Weight		Maturity		Weight	Weight	Fecundity	Mesentaric	
Date	Year	Season	Waterbody	Location	Site	Species	Fish #	(cm)	(cm)	(g)	(g)	Sex	Stage	Age	(g)	(g)	(# eggs)	Fat	External Pathology
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	65	7.7	6.9	3.52	2.99	F	SD	3	0.086	0.184		1	
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		66	7.5	6.8	3.32	2.80	F	SD	2	0.065	0.150	381	1	
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	67	7.7	6.9	3.59	3.07	F	SD	3	0.073	0.213		1	
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	68	7.2	6.5	2.81	2.54	М	SD	4	0.038	0.053		1	
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	69	8.4	7.6	4.44	3.82	F	SD	3	0.095	0.243		1	
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	70	6.2	5.7	1.76	1.53	М	SD	1	0.030	0.022		2	
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	71	8.1	7.4	3.64	3.16	F	SD	3	0.065	0.165		1	
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		72	7.3	6.6	2.93	2.61	М	SD	2	0.041	0.067		1	
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		73	7.3	6.7	2.82	2.51	М	SD	3	0.046	0.062		1	
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		74	5.6	5.0	1.38	1.22	1	IM	1	0.017	0.007		2	
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		75	10.1	9.7	7.96	7.18	F	SD	4	0.094	0.354		0	
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		76	7.7	7.0	3.65	3.14	F	SD	4	0.060	0.159		1	
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		77	7.5	6.7	3.18	2.84	M	SD	2	0.051	0.067		2	
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		78	8.0	7.2	3.90	3.39	F	SD	3	0.059	0.212		1	
15/9/99 15/9/99	1999 1999	Fall	Athabasca Athabasca	Suncor Discharge Suncor Discharge	ARSD ARSD		79 80	8.1 8.3	7.4 7.5	4.14 4.45	3.63 3.92	F	SD SD	3	0.073	0.177		2	
15/9/99	1999	Fall	Athabasca		ARSD		81	6.3 7.9	7.5	3.75	3.92	M	SD	2	0.078	0.220		0	
15/9/99	1999	Fall	Athabasca	Suncor Discharge Suncor Discharge	ARSD		82	8.4	7.1	5.14	4.17	F	SD	3	0.054	0.062		2	
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		83	8.4	7.6	4.96	4.05	F	SD	3	0.093	0.257		1	
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		84	5.9	5.2	1.80	1.54	÷	MA	1	0.022	0.015		2	
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		85	7.5	6.8	3.42	3.04	M	SD	2	0.055	0.057		2	
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		86	8.0	7.2	4.26	3.74	F	SD	2	0.064	0.204		2	
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		87	7.7	7.0	3.70	3.20	м	SD	3	0.054	0.051		1	
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	88	8.0	7.2	3.99	3.52	F	SD	4	0.055	0.210		1	
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	89	8.4	7.6	4.75	4.15	F	SD	3	0.074	0.263		1	
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	90	7.3	6.8	3.15	2.83	М	SD	2	0.029	0.049		2	
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	91	8.4	8.1	6.13	5.28	F	SD	2	0.092	0.308		2	
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	92	5.9	5.6	1.69	1.44	1	IM	1	0.023	0.005		2	
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD	TRPR	93	8.2	7.4	5.73	3.65	F	SD	4	0.090	0.217		2	spleen: enlarged
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		94	8.1	7.5	4.62	3.84	F	SD	3	0.125	0.295		2	spleen: enlarged
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		95	5.7	5.2	1.48	1.29	М	SD	1	0.019	0.022		1	
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		96	6.1	5.8	2.09	1.84	М	SD	1	0.024	0.041		2	
15/9/99	1999	Fall	Athabasca	Suncor Discharge	ARSD		97	7.4	6.6	3.42	2.96	F	SD	2	0.062	0.170		2	
15/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	98	8.2	7.4	4.63	3.77	F	SD	4	0.124	0.286		1	spleen: enlarged
15/9/99 15/9/99	1999	Fall	Athabasca	Reference	ARR ARR	TRPR	99	9.1	8.6	5.96	4.97	F	SD SD	2	0.116	0.366		2	anlaan anlareed
15/9/99	1999 1999	Fall Fall	Athabasca Athabasca	Reference Reference	ARR	TRPR TRPR	100 102	8.3 7.1	7.6 6.4	4.13 2.92	3.71 2.50	M	SD	2	0.050	0.062		1	spleen: enlarged
15/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	102	7.1	6.6	2.92	2.56	M	SD	4	0.037	0.038		1	
15/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	103	7.0	6.4	2.30	2.36	M	SD	2	0.043	0.000		2	
15/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	104	7.4	6.9	3.12	2.30	M	SD	2	0.046	0.000		2	spleen: enlarged
15/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	106	8.3	7.8	4.76	4.14	M	SD	2	0.072	0.076		2	
15/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	107	8.2	7.3	4.47	3.77	F	SD	3	0.215	0.090	371	1	
15/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	108	7.8	7.1	3.97	3.40	M	SD	3	0.061	0.104		0	
15/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	109	7.9	7.1	3.54	3.05	F	SD	3	0.056	0.178		1	spleen: enlarged
15/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	110	8.6	7.8	5.04	4.27	F	SD	1	0.084	0.310	1116	2	
15/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	111	7.2	6.4	2.75	2.49	м	SD	3	0.028	0.051		0	
15/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	112	8.1	7.5	4.00	3.39	F	SD	3	0.082	0.193	822	1	spleen: enlarged
15/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	113	9.0	8.3	6.80	5.69	F	SD	3	0.105	0.380	1246	2	
15/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	114	6.9	6.2	2.65	2.34	М	SD	3	0.033	0.039		1	
15/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	115	7.8	7.0	3.83	3.36	М	SD	2	0.054	0.075		1	
15/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	116	8.3	7.5	4.60	3.93	F	SD	1	0.061	0.244		1	
15/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	117	7.9	7.2	4.30	3.57	F	SD	4	0.082	0.223	785	1	
15/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	118	7.9	7.2	4.11	3.56	F	SD	2	0.067	0.197		1	spleen: enlarged
15/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	119	8.0	7.4	3.87	3.30	F	SD	3	0.066	0.211		1	
15/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	120	7.6	6.9	3.34	2.82	F	SD	3	0.050	0.156		1	

								Total	Fork	Total	Carcass				Liver	Gonad			
								Length	Length	Weight	Weight		Maturity		Weight	Weight	Fecundity	Mesentaric	
Date Y	rear	Season	Waterbody	Location	Site	Species	Fish #	(cm)	(cm)	(g)	(g)	Sex	Stage	Age	(g)	(g)	(# eggs)	Fat	External Pathology
	-	Fall			ARR	TRPR	121	6.5	5.0	2.17	1.94	M	SD	1	0.037	0.024		2	Excitian altology
	1999 1999	Fall	Athabasca	Reference	ARR	TRPR	121	6.5 8.0	5.9 7.3	4.33	3.71	F	SD	3	0.037	0.024		2	
	1999	Fall	Athabasca	Reference	ARR	TRPR	122	7.7	7.0	3.62	3.10	M	SD	2	0.085	0.179		1	
	999	Fall	Athabasca	Reference	ARR	TRPR	123	7.2	6.5	2.88	2.45	M	SD	2	0.047	0.073		2	numerous perseites (cille, mesontoris fot, intestings)
	999	Fall	Athabasca	Reference	ARR	TRPR	124	7.2	6.6	2.88	2.43	M	SD	3	0.028	0.050		1	numerous parasites (gills, mesentaric fat, intestines)
	999	Fall	Athabasca	Reference	ARR	TRPR	125	8.0	7.5	4.04	3.68	M	SD	3	0.048	0.068		1	
	999	Fall	Athabasca Athabasca	Reference Reference	ARR	TRPR	120	8.0	7.3	3.96	3.40	F	SD	3	0.045	0.008	485	1	
	999	Fall	Athabasca	Reference	ARR	TRPR	127	8.0	7.3	3.88	3.40	F	SD	3	0.062	0.177	465 785	0	
	999	Fall	Athabasca	Reference	ARR	TRPR	120	8.2	7.5	4.35	3.62	F	SD	3	0.054	0.210	765	2	
	999	Fall	Athabasca	Reference	ARR	TRPR	129	7.8	7.5	4.35	3.62	м	SD	3	0.064	0.213	/19	2	
					ARR	TRPR	130				2.30	M	SD			0.075		0	fine, mederate active presion with some homographics (tail fin)
	999	Fall	Athabasca	Reference				7.0	6.4	2.65				2	0.035		000		fins; moderate active erosion with some hemorraging (tail fin)
	999	Fall	Athabasca	Reference	ARR	TRPR	132	7.9	7.3	4.53	3.72	F	SD	2	0.083	0.211	886	2	fins: light active erosion (tail fin)
	999	Fall	Athabasca	Reference	ARR	TRPR	133	7.4	6.8	3.33	2.90	M	SD	3	0.050	0.069		2	
	999	Fall	Athabasca	Reference	ARR	TRPR	134	8.7	7.7	5.76	4.80	F	SD	4	0.102	0.330		1	
	999	Fall	Athabasca	Reference	ARR	TRPR	135	7.9	7.0	3.90	3.44	M	SD	3	0.030	0.075		1	
	999	Fall	Athabasca	Reference	ARR	TRPR	136	8.0	7.3	3.88	3.59	M	SD	3	0.054	0.100		1	
	999	Fall	Athabasca	Reference	ARR	TRPR	137	7.4	6.7	3.11	2.71	M	SD	2	0.049	0.067		1	
	999	Fall	Athabasca	Reference	ARR	TRPR	138	6.8	6.0	2.55	2.27	M	SD	4	0.040	0.040		1	
	999	Fall	Athabasca	Reference	ARR	TRPR	139	7.8	7.2	3.91	3.30	F	SD	2	0.081	0.165		1	liver: general discolouration (pale); colour change in whole liver
	999	Fall	Athabasca	Reference	ARR	TRPR	140	7.6	6.9	3.68	3.28	M	SD	2	0.046	0.072		1	
	999	Fall	Athabasca	Reference	ARR	TRPR	141	6.4	5.7	1.97	1.76	M	SD	2	0.033	0.031		1	
	999	Fall	Athabasca	Reference	ARR	TRPR	142	8.5	7.6	5.13	4.42	F	SD	2	0.103	0.225	810	1	
	999	Fall	Athabasca	Reference	ARR	TRPR	143	7.7	7.2	3.79	3.42	М	SD	2	0.043	0.084		1	
	999	Fall	Athabasca	Reference	ARR	TRPR	144	6.6	6.1	2.35	2.10	М	SD	2	0.025	0.030		2	
	999	Fall	Athabasca	Reference	ARR	TRPR	145	7.8	7.0	3.49	3.12	М	SD	3	0.031	0.051		1	
	999	Fall	Athabasca	Reference	ARR	TRPR	146	7.8	7.0	3.54	3.19	м	SD	2	0.039	0.060		1	
	999	Fall	Athabasca	Reference	ARR	TRPR	147	7.3	6.4	3.02	2.68	М	SD	3	0.027	0.020		1	
	999	Fall	Athabasca	Reference	ARR	TRPR	148	8.5	7.6	5.10	4.65	F	SD	2	0.100	0.287		1	
	999	Fall	Athabasca	Reference	ARR	TRPR	149	7.5	6.6	3.25	2.79	м	SD	3	0.041	0.066		1	
	999	Fall	Athabasca	Reference	ARR	TRPR	150	7.8	7.0	4.18	3.51	F	SD	3	0.108	0.274	1370	2	
	999	Fall	Athabasca	Reference	ARR	TRPR	151	7.5	6.7	3.37	2.86	М	SD	3	0.079	0.043		2	
	999	Fall	Athabasca	Reference	ARR	TRPR	152	8.0	7.4	4.22	3.70	М	SD	3	0.067	0.081		1	
	999	Fall	Athabasca	Reference	ARR	TRPR	153	8.0	7.3	4.20	3.65	F	SD	2	0.060	0.186		1	
	999	Fall	Athabasca	Reference	ARR	TRPR	154	7.1	6.5	2.54	2.26	М	SD	2	0.040	0.048		1	
	999	Fall	Athabasca		ARMR		155	7.7	6.9	3.36	3.02	М	SD	3	0.036	0.072		1	
	999	Fall	Athabasca	Muskeg Confluence	ARMR		156	8.1	7.5	3.98	3.43	F	SD	3	0.072	0.242	1452	1	
	999	Fall	Athabasca	0	ARMR		157	8.1	7.2	3.88	3.50	м	SD	2	0.045	0.082		1	
	999	Fall	Athabasca	Muskeg Confluence	ARMR		158	8.2	7.3	3.86	3.32	F	SD	3	0.061	0.266	1889	1	
	999	Fall	Athabasca	Muskeg Confluence	ARMR		159	8.3	7.5	4.09	3.68	м	SD	2	0.043	0.084		1	
	999	Fall	Athabasca	Muskeg Confluence	ARMR		160	8.2	7.5	3.88	3.40	F	SD	4	0.045	0.161	984	0	
	999	Fall	Athabasca	Muskeg Confluence	ARMR		161	8.0	7.3	3.75	3.40	М	SD	1	0.038	0.064		1	
	999	Fall	Athabasca	Muskeg Confluence	ARMR		162	7.7	7.0	3.31	2.98	М	SD	2	0.036	0.066		1	
	999	Fall	Athabasca	Muskeg Confluence	ARMR		163	7.5	6.6	3.15	2.84	М	SD	1	0.043	0.065		1	
	999	Fall	Athabasca	Muskeg Confluence	ARMR		164	6.8	6.2	2.36	2.13	М	SD	3	0.027	0.040		1	
	999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	165	8.2	7.6	4.43	3.81	F	SD	3	0.060	0.250		1	
15/9/99 1	999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	166	7.5	6.7	3.08	2.78	М	SD	3	0.038	0.039		1	
	999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	167	7.1	6.5	2.63	2.32	F	SD	2	0.037	0.131	676	0	
15/9/99 1	999	Fall	Athabasca	Muskeg Confluence	ARMR		168	8.4	7.6	4.46	3.74	F	SD		0.074	0.321	2428	1	other: white dots on intestine; taken for microscopic inspection
	999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	169	7.8	7.0	3.40	3.07	М	SD	2	0.033	0.076		1	
15/9/99 1	999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	170	8.2	7.5	4.11	3.55	F	SD	3	0.054	0.204	1455	1	
15/9/99 1	999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	171	8.2	7.4	3.98	3.46	F	SD	3	0.056	0.163		1	
15/9/99 1	999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	172	7.9	7.0	3.52	3.16	м	SD	3	0.040	0.064		0	
15/9/99 1	999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	173	7.6	6.7	3.30	2.94	м	SD	2	0.034	0.065		0	
15/9/99 1	999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	174	7.4	6.7	2.90	2.67	М	SD	3	0.038	0.066		1	
15/9/99 1	999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	175	7.2	6.5	2.77	2.47	м	SD	2	0.030	0.055		0	

									Total	Fork	Total	Carcass	1			Liver	Gonad			
bet bet<														Maturity				Fecundity	Mesentaric	
Desc Desc <thdesc< th=""> Desc Desc D</thdesc<>	Date	Year	Season	Waterbody	Location	Site	Species	Fish #					Sex		Age				Fat	External Pathology
Unive No. No. No. </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>7.6</th> <th>69</th> <th>3 30</th> <th></th> <th></th> <th></th> <th></th> <th>0.042</th> <th>0.072</th> <th></th> <th>1</th> <th></th>									7.6	69	3 30					0.042	0.072		1	
by by by by by by by by <					-															
Image Boil Fail Animase Sourceshing Abs Fail Boil Fail Fail Boil Fail Boil Fail Boil Fail Fail Fail																				
Suppo Fiel Mease Suppo Fiel Fiel Fiel Fiel <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1177</td><td></td><td></td></t<>																		1177		
Syme Fiel Masses Sore Obtime Masses													_		3					
by by i Al Albass second by by Albass second by Al															2			440	-	
Tesh Network Northey APP Nor																		1701		
Network Network <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>·</td><td></td></t<>																			·	
1999 16 1.8 A. Bankaso Socon Durating A. BAS 1787 16 1 1 1999 67.0 Anbaso Socon Durating A. BAS 1787 16 1 2 1 1 1999 67.0 Anbaso Socon Durating A. BAS 1787 16 1 2 1 1 1999 67.0 Anbaso Socon Durating A. BAS 1787 10 1 1 1 1 1 1990 67.0 Anbaso Socon Durating A. BAS 1787 10 1															3			1305		
Theom Test Absolute Ab													_							
New New Secon Decompany ASS New New New New <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td></td><td></td><td>001</td><td></td><td></td></t<>															2			001		
Teges Fea Analow Succo Dishneg ASS Teges Fe So A So A So So So So So<													_					901		
Bigs Bigs <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1007</td><td></td><td></td></th<>																		1007		
Tege Tege <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1287</td><td></td><td></td></th<>																		1287		
19500 1010 10100 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 10000000 10000000 100000000 100000000 1000000000 100000000000000 1000000000000000000000000000000000000																		1000		
1996 997 81 Alkabaca Survo Distump A82 787 78 78 7 2 0.40 0.70 1 1 1998 997 97 1 Alkabaca Survo Distump A82 TPR 10 3 0.70 1 1998 1997 11 Alkabaca Survo Distump A83 TPR 10 1.2 3.4 1.0 1.0 1.0 1.0 1998 1997 11 Alkabaca Survo Distump A83 TPR 10 2.3 3.4 4 F 50 0.0 0.0 1.0 1.0 1998 1997 11 Alkabaca Survor Distump A83 TPR 10 2.3 3.4 4.8 10 3.0 0.0 0.0 0.0 10 11 1998 199 11 Alkabaca Survor Distump A83 TPR 3.0 3.0 3.0 3.0 3.0 3.0																		1233	-	
1999 101 Alkakaca Succo Diachya ARS TPR 10 2 1.2 1.2 1.0 1.0 1.0 1999 101 Alkakaca Succo Diachya ARS TPR 10 1.0 2.0 0.00 1.0 0.00 1.0 1999 100 11 Alkabaca Succo Diachya ARS TPR 10 1.0 2.0 0.00 0.00 0.00 1.0 1999 100 11 Alkabaca Succo Diachya ARS TPR 10 7.1 3.0 2.0 1.0 0.00 0.00 1.0 1.0 1999 101 Alkabaca Succo Diachya ARS TPR 10 2.0 2.0 0.00 0.00 1.0 1.0 1.0 1																				
Term Almabasa Suncer Lischwarge ARBD TRP 1 6 7 6 7 6 7 6 7 6 7 6 7 7 </td <td></td>																				
Shoop Shoop <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td><td></td><td></td><td></td><td></td><td></td></th<>															3					
System Sunce Obschamp ARSD TPRP 190 7.2 3.44 7.4 8.0 0.000 0.100 6.000 1 System Sunce Obschamp ARSD TPRP 190 7.1 7.0 3.00 7.1 8.00 0.000															-			870		
9599 999 Fail Athabasa Suncor Dischargo ARDS TRP 197 7.7 7.1 8.0 2.1 0.090 0.01 7.42 1 15999 1999 Fail Athabasa Suncor Dischargo ARDS TRP 199 7.6 6.8 3.8 2.6 7.8 0.002 1 15999 1999 Fail Athabasa Suncor Dischargo ARDS TRP 199 7.8 6.8 3.8 2.6 0.000 0.014 0.71 0.01 15999 1999 Fail Athabasa Suncor Dischargo ARDS TRP 201 7.8 0.01 3.8 F 0.07 0.076 0.077 1 1 15999 1999 Fail Athabasa Suncor Dischargo ARDS TRP 201 7.6 6.6 2.6 2.6 0.007 1.00 1.7 0.01 1.00 0.01 1.00 1.00 1.00 1.00 1.00																				
15/09/1 15/09/1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																				
15999 1999 Fall Albabasa Suncor Discharge ARSD TPP 199 7.6 6.8 3.3 2.9 F SD 3 0.000 0.144 7.13 0 15999 1999 Fall Ahbabasa Suncor Discharge ARSD TFP 20 8.2 7.5 4.50 3.6 4.6 0.076 0.177 9.7 1 15999 1999 Fall Ahbabasa Suncor Discharge ARSD TFR 203 2.4 5.7 5.00 F SD 0.067 0.177 997 1 15999 1999 Fall Ahbabasa Suncor Discharge ARSD TFR 203 2.4 5.7 6.6 2.4 1.5 3.00 0.017 0.017 0.01 1 15999 1999 Fall Ahbabasa Suncor Discharge ARSD TFR 200 7.2 6.6 2.9 7.2 6.6 7.2 6.6 7.3 4					0													742		
Shope Fall Anhabesa Suncor Duchage ARS T.RR 200 2 7 4.66 3.66 F 500 2 0.005 0.212 1 Using 1999 Fall Anhabesa Suncor Duchage ARSD T.RR 20 7.8 7.0 3.03 3.43 4.8 F 500 1 0.017 997 1 5509 1999 Fall Anhabesa Suncor Duchage ARSD T.RR 20 7.4 7.0 3.03 3.44 5.00 7.0 0.01 0.017 997 1 5509 1999 Fall Anhabesa Suncor Duchage ARSD T.RR 20 7.6 6.8 3.40 1.8 0.021 0.041 0.065 1 1 15999 1999 Fall Anhabesa Suncor Duchage RSD T.RR 200 7.2 7.6 6 3 0.016 0.125 1 1 1																				
Singe Fall Anhabasa Suncor Duchage ARSD TRP 201 8.00 7.00 8.00 7.00 8.00 7.00 8.00 7.00 8.00 7.00 9.07 0.77 0.70 0.77 0.77 9.07 0.17 15/999 1999 Fall Anhabasa Suncor Duchage ARSD TRP 203 9.2 8.4 6.72 6.00 F SD 0.005 0.033 1 1 15/999 1999 Fall Anhabasa Suncor Duchage ARSD TRP 201 6.6 3.44 3.13 M SD 2 0.01 0.07 1 1 15/999 1999 Fall Anhabasa Suncor Duchage ARSD TRP 200 7.2 6.6 2.6 2.0 0.01 0.01 0.02 2.44 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01<					0													713		
50%0 1999 Fall Athabasca Suncor Discharge ARSD TPRP 202 7.8 7.0 3.83 3.44 F SD 0.079 0.177 997 1 15998 1998 Fall Athabasca Suncor Discharge ARSD TRPR 204 6.4 1.7 3.43 3.44 5.0 2 0.068 0.033 1 1 15/998 1999 Fall Athabasca Suncor Discharge ARSD TRPR 205 7.6 6.8 3.44 3.1 M SD<2																				
15096 1990 Fall Athabasca Sunor Discharge ARD TRPR 203 9.2 8.4 5.7.0 6.0 F SD 7 0.080 0.033 1 1 15099 1990 Fall Athabasca Sunor Discharge ARD TRPR 20 8.44 3.13 M SD 2 0.041 0.065 1 15099 1999 Fall Athabasca Sunor Discharge ARD TRPR 206 7.2 6.6 2.96 2.95 0.15 0.000 2.41 0.001 numerous parasites 15099 1999 Fall Athabasca Sunor Discharge ARD TRPR 2.06 7.2 6.46 7.2 6.40 F SD 3 0.061 0.15 1.000 1.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000					0										1					
15/09/0 1999 Fail Athabasca Suncor Discharge ARSD TPRP 204 8.1 7.3 4.05 8.0 F SD 2 0.080 0.176 1 15/990 1999 Fail Athabasca Suncor Discharge ARSD TRPR 205 7.6 6.8 3.44 3.13 M SD 3 0.041 0.045 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>997</td><td></td><td></td></t<>																		997		
15000 1999 Fail Athabases Suncor Discharge ARSD TRPR 206 7.2 6.6 2.46 3.1 M SD 2 0.041 0.065 1 15/999 1999 Fail Athabases Suncor Discharge ARSD TRPR 206 7.2 6.6 2.56 M SD 2 0.041 0.061 0.041 0 numerous parasites 15/999 1999 Fail Athabases Suncor Discharge ARSD TRPR 207 10.2 9.2 7.2 6.6 2.56 M SD 3 0.061 0.165 1 15/999 1999 Fail Athabases Suncor Discharge ARSD TRPR 20 8.4 7.6 6.11 4.52 F SD 3 0.068 0.283 1449 0 15/999 1999 Fail Athabases Suncor Discharge ARSD TRPR 211 9.0 8.1 6.83 5.10 F SD 2 0.011 0.331 1757 1 1					0															
15090 1909 Fail Athabasca Suncor Discharge ARS0 TRP 206 7.2 6.6 2.96 2.66 M SD 2 0.041 0.041 0 numerous parasites 15/990 1999 Fail Athabasca Suncor Discharge ARS0 TRPR 207 10.2 9.2 7.2 6.6 4.8 3 0.061 0.66 1 15/990 1999 Fail Athabasca Suncor Discharge ARS0 TRPR 200 8.3 7.3 4.75 4.04 F SD 3 0.068 0.283 1449 0 15/990 1999 Fail Athabasca Suncor Discharge ARSD TRPR 210 8.4 7.6 5.11 4.52 F SD 2 0.011 0.050 12520 1 15/999 1999 Fail Athabasca Suncor Discharge ARSD TRPR 217 9.0 8.2 6.10 5.2 2 0.011 0.33 10.50 2520 1 1 16999 14																				
15999 Fall Alhabasca Suncor Discharge ARSD TRPR 207 10.2 9.2 9.2 0.115 0.300 2445 1 15/999 1999 Fall Alhabasca Suncor Discharge ARSD TRPR 208 7.6 6.8 3.475 4.04 F SD 3 0.066 0.166 1 15/999 1999 Fall Alhabasca Suncor Discharge ARSD TRPR 209 8.3 7.3 4.75 4.04 F SD 3 0.066 0.283 1449 0 15/999 1999 Fall Alhabasca Suncor Discharge ARSD TRPR 210 8.4 7.6 5.10 F SD 2 0.018 0.31 1757 1 15/999 Psell Alhabasca Suncor Discharge ARSD TRPR 212 9.0 8.2 6.10 5.28 F SD 2 0.076 1 1 16/999 Psell Alhabasca Suncor Discharge ARSD TRPR 216 8.																				
150/99 1999 Fall Athabasca Suncor Discharge ARD TRP 208 7.6 6.8 3.45 3.01 F SD 3 0.061 0.165 1 15/999 1999 Fall Athabasca Suncor Discharge ARSD TRPR 209 8.3 7.3 4.75 4.04 F SD 3 0.061 0.165 1 15/999 1999 Fall Athabasca Suncor Discharge ARSD TRPR 210 8.4 7.6 5.13 4.04 F SD 3 0.072 0.29 1625 1 15/999 1999 Fall Athabasca Suncor Discharge ARSD TRPR 211 9.0 8.2 6.10 5.28 F SD 2 0.011 0.350 110 16/999 1999 Fall Athabasca Suncor Discharge ARSD TRPR 214 8.6 7.8 3.28 F SD<2																				numerous parasites
15/9/99 1999 Fall Athabasca Suncor Discharge ARSD TRPR 209 8.3 7.3 4.75 4.04 F SD 3 0.068 0.283 1449 0 15/9/99 1999 Fall Athabasca Suncor Discharge ARSD TRPR 210 8.4 7.6 5.11 4.52 F SD 0.068 0.283 1449 0 15/9/99 1999 Fall Athabasca Suncor Discharge ARSD TRPR 210 8.4 7.6 5.11 4.52 F SD 0.081 0.331 1777 1 16/999 1999 Fall Athabasca Suncor Discharge ARSD TRPR 212 9.0 8.2 6.10 5.28 F SD 2 0.111 0.350 2520 1 16/999 1999 Fall Athabasca Suncor Discharge ARSD TRPR 216 8.1 7.3 3.78 3.32 F SD 2 0.075 0.270 1414 1 1 16/999																		2445		
16909 1909 Fall Athabasca Suncor Discharge ARSD TRPR 210 8.4 7.6 5.11 4.52 F SD 3 0.072 0.259 1625 1 15/9/98 1999 Fall Athabasca Suncor Discharge ARSD TRPR 211 9.0 8.2 6.10 5.8 5.0 2 0.011 0.350 2520 1 16/999 1999 Fall Athabasca Suncor Discharge ARSD TRPR 212 9.0 8.2 6.10 5.8 2 0.011 0.350 2520 1 16/999 1999 Fall Athabasca Suncor Discharge ARSD TRPR 214 8.6 7.8 4.38 M S.D 2 0.056 0.076 1 1 16/999 1999 Fall Athabasca Suncor Discharge ARSD TRPR 216 8.0 7.1 3.58 3.16 F SD 3 0.056 0.138 1270 1 16/999 1999 Fall <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																				
15/9/98 199 Fall Athabasca Suncor Discharge ARSD TRP 211 9.0 8.1 5.83 5.10 F SD 2 0.081 0.331 1767 1 15/9/98 1999 Fall Athabasca Suncor Discharge ARSD TRP 211 9.0 8.2 6.10 5.28 F SD 2 0.11 0.330 2520 1 16/999 Pail Athabasca Suncor Discharge ARSD TRP 213 7.8 7.1 3.64 3.28 M SD 2 0.031 0.270 1414 1 16/999 Pail Athabasca Suncor Discharge ARSD TRP 214 8.6 7.8 4.88 4.26 F SD 2 0.031 1270 1144 1 16/999 Fail Athabasca Suncor Discharge ARSD TRP 216 8.1 7.3 3.78 3.32 F SD 2 0.070 1201 120 1201 1201 1201 1201 1201													_						-	
15/9/99 199 Fall Athabasca Suncor Discharge ARSD TRPR 212 9.0 8.2 6.10 5.28 F SD 2 0.111 0.360 2520 1 16/999 1999 Fall Athabasca Suncor Discharge ARSD TRPR 213 7.8 7.1 3.64 3.28 M SD 3 0.056 0.076 1 16/999 1999 Fall Athabasca Suncor Discharge ARSD TRPR 213 7.8 7.1 3.64 3.2 F SD 2 0.003 0.201 1267 0 16/999 1999 Fall Athabasca Suncor Discharge ARSD TRPR 216 8.0 7.1 3.58 3.16 F SD 2 0.003 0.201 1267 0 16/999 1999 Fall Athabasca Suncor Discharge ARSD TRPR 216 8.0 7.1 3.58 3.16 F SD 4 0.075 0.207 1020 1 16/999					0						-									
16/9/99 199 Fall Athabasca Suncor Discharge ARSD TRPR 213 7.8 7.1 3.64 3.28 M SD 3 0.056 0.076 1 16/9/99 1999 Fall Athabasca Suncor Discharge ARSD TRPR 214 8.6 7.8 4.88 4.26 F SD 2 0.073 0.270 1414 1 16/9/99 1999 Fall Athabasca Suncor Discharge ARSD TRPR 215 8.1 7.3 3.78 3.22 F SD 2 0.073 0.201 1267 0 16/9/99 1999 Fall Athabasca Suncor Discharge ARSD TRPR 217 7.5 6.7 3.27 2.81 F SD 2 0.062 0.184 1204 1 16/9/99 1999 Fall Athabasca Suncor Discharge ARSD TRPR 218 8.2 7.3 3.75 F SD 3 0.045 0.045 1 16/999 1999 <td< td=""><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>					0								_							
16/9/99 199 Fall Athabasca Suncor Discharge ARSD TRPR 214 8.6 7.8 4.88 4.26 F SD 2 0.093 0.270 1414 1 16/9/99 1999 Fall Athabasca Suncor Discharge ARSD TRPR 215 8.1 7.3 3.78 3.32 F SD 2 0.073 0.201 1267 0 16/9/99 1999 Fall Athabasca Suncor Discharge ARSD TRPR 216 8.0 7.1 3.58 3.16 F SD 2 0.073 0.201 1267 0 16/9/99 1999 Fall Athabasca Suncor Discharge ARSD TRPR 218 8.2 7.3 4.31 3.79 F SD 4 0.075 0.207 1082 0 16/9/99 1999 Fall Athabasca Suncor Discharge ARSD TRPR 219 8.0 7.4 4.34 3.75 F SD 3 0.045 0.045 1 1					0													2520		
16/9/99 199 Fail Athabasca Suncor Discharge ARSD TRP 215 8.1 7.3 3.78 3.32 F SD 2 0.073 0.201 1267 0 16/9/99 199 Fail Athabasca Suncor Discharge ARSD TRP 216 8.0 7.1 3.58 3.16 F SD 3 0.058 0.183 1270 1 16/9/99 199 Fail Athabasca Suncor Discharge ARSD TRP 217 7.5 6.7 3.27 2.81 F SD 2 0.062 0.184 1204 1 16/9/99 1999 Fail Athabasca Suncor Discharge ARSD TRP 218 8.2 7.3 4.31 3.79 F SD 3 0.005 0.229 1155 1 16/9/99 199 Fail Athabasca Suncor Discharge ARSD TRP 221 9.0 8.2 5.19 4.20 F SD 2 0.045 0.45 1 1 1 <																				
16/9/99 199 Fall Athabasca Suncor Discharge ARSD TRPR 216 8.0 7.1 3.58 3.16 F SD 3 0.058 0.183 1270 1 16/9/99 199 Fall Athabasca Suncor Discharge ARSD TRPR 217 7.5 6.7 3.27 2.81 F SD 2 0.062 0.184 1204 1 16/9/99 199 Fall Athabasca Suncor Discharge ARSD TRPR 218 8.2 7.3 4.31 3.79 F SD 3 0.062 0.184 1204 1 16/9/99 199 Fall Athabasca Suncor Discharge ARSD TRPR 219 6.7 3.41 3.79 F SD 3 0.045 0.045 0.155 1 16/9/99 199 Fall Athabasca Muskeg Confluence ARMR TRPR 221 9.0 8.2 5.19 4.20 F SD 2 0.045 0.425 1 1 16/9/					0															
I6/9/99 1999 Fall Athabasca Suncor Discharge ARSD TRP 217 7.5 6.7 3.27 2.81 F SD 2 0.062 0.184 1204 1 16/9/99 1999 Fall Athabasca Suncor Discharge ARSD TRP 218 8.2 7.3 4.31 3.79 F SD 4 0.075 0.207 1082 0 16/9/99 1999 Fall Athabasca Suncor Discharge ARSD TRP 219 8.0 7.4 4.34 3.75 F SD 3 0.089 0.229 1155 1 16/9/99 1999 Fall Athabasca Suncor Discharge ARSD TRP 219 6.7 3.41 3.09 M SD 3 0.045 0.045 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 221 9.6 8.2 5.0 2 0.076 0.237 642 1 16/9/99 1999 Fall Athabasca					0															
I6/9/99 1999 Fall Athabasca Suncor Discharge ARSD TRP 218 8.2 7.3 4.31 3.79 F SD 4 0.075 0.207 1082 0 16/9/99 1999 Fall Athabasca Suncor Discharge ARSD TRP 218 8.2 7.3 4.31 3.79 F SD 3 0.0075 0.207 1082 0 16/9/99 1999 Fall Athabasca Suncor Discharge ARSD TRP 219 8.0 7.4 4.34 3.75 F SD 3 0.089 0.229 1155 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 220 7.5 6.6 3.41 3.09 M SD 3 0.045 0.045 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 222 7.5 6.8 3.13 2.87 M SD 3 0.047 0.055 1 16/9/99 <																				
16/9/99 1999 Fall Athabasca Suncor Discharge ARSD TRP 219 8.0 7.4 4.34 3.75 F SD 3 0.089 0.229 1155 1 16/9/99 1999 Fall Athabasca Suncor Discharge ARSD TRP 219 8.0 7.4 4.34 3.75 F SD 3 0.089 0.229 1155 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 221 9.0 8.2 5.19 4.20 F SD 3 0.045 0.045 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 221 9.0 8.2 5.19 4.20 F SD 2 0.060 0.282 2025 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 222 7.5 6.8 3.13 2.87 M SD 3 0.064 0.237 642 1																				
16/9/99 1999 Fall Athabasca Suncor Discharge ARSD TRP 220 7.5 6.7 3.41 3.09 M SD 3 0.045 0.15 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARM TRPR 221 9.0 8.2 5.19 4.20 F SD 2 0.080 0.282 2025 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARM TRPR 222 7.5 6.8 3.13 2.87 M SD 3 0.045 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARM TRPR 222 7.5 6.8 3.13 2.87 M SD 3 0.047 0.054 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 224 8.9 8.4 5.03 4.30 F SD 3 0.045 0.237 642 1 16/9/99 1999 Fall					<u> </u>															
I6/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 221 9.0 8.2 5.19 4.20 F SD 2 0.080 0.282 2025 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 222 7.5 6.8 3.13 2.87 M SD 3 0.047 0.054 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 222 7.5 6.8 3.13 2.87 M SD 3 0.047 0.054 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 223 8.3 7.4 4.17 3.46 F SD 2 0.076 0.237 642 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 225 8.6 7.6 4.50 4.00 F SD 3 0.068 0.212 1302 1 1 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1155</td><td></td><td></td></th<>																		1155		
16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 222 7.5 6.8 3.13 2.87 M SD 3 0.047 0.054 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 223 8.3 7.4 4.17 3.46 F SD 2 0.076 0.237 642 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 224 8.9 8.4 5.03 4.38 F SD 2 0.076 0.237 642 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 226 8.6 7.6 4.57 4.00 F SD 3 0.068 0.212 1302 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 226 7.8 7.2 3.74 3.16 F SD 1 0.064 0.217 922 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																				
16/9/9 199 Fall Athabasca Muskeg Confluence ARMR TRPR 223 8.3 7.4 4.17 3.46 F SD 2 0.076 0.237 642 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 224 8.9 8.4 5.03 4.38 F SD 2 0.106 0.304 1241 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 225 8.6 7.6 4.57 4.00 F SD 3 0.068 0.212 1302 1 16/9/99 199 Fall Athabasca Muskeg Confluence ARMR TRPR 226 7.8 7.2 3.74 3.16 F SD 1 0.094 0.217 922 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 227 8.0 7.1 3.86 3.10 F SD 1 0.055 0.078 0 1					-													2025		
16/9/9 199 Fall Athabasca Muskeg Confluence ARMR TRPR 224 8.9 8.4 5.03 4.38 F SD 2 0.106 0.304 1241 1 16/9/99 199 Fall Athabasca Muskeg Confluence ARMR TRPR 225 8.6 7.6 4.57 4.00 F SD 3 0.068 0.212 1302 1 16/9/99 199 Fall Athabasca Muskeg Confluence ARMR TRPR 226 7.8 7.2 3.74 3.16 F SD 1 0.094 0.217 922 1 16/9/99 199 Fall Athabasca Muskeg Confluence ARMR TRPR 226 7.8 7.1 3.84 3.36 M SD 1 0.094 0.217 922 1 16/9/99 199 Fall Athabasca Muskeg Confluence ARMR TRPR 228 7.8 7.1 3.86 3.10 F SD 3 0.016 0.244 935 1					-															
16/9/9 199 Fall Athabasca Muskeg Confluence ARMR TRPR 225 8.6 7.6 4.57 4.00 F SD 3 0.068 0.212 1302 1 16/9/9 199 Fall Athabasca Muskeg Confluence ARMR TRPR 225 8.6 7.6 4.57 4.00 F SD 3 0.068 0.212 1302 1 16/9/9 199 Fall Athabasca Muskeg Confluence ARMR TRPR 226 7.8 7.2 3.74 3.16 F SD 1 0.094 0.217 922 1 16/9/9 199 Fall Athabasca Muskeg Confluence ARMR TRPR 227 8.0 7.1 3.84 3.36 M SD 1 0.055 0.078 0 16/9/99 199 Fall Athabasca Muskeg Confluence ARMR TRPR 229 7.2 6.5 2.77 2.43 M SD 3 0.037 0.053 1 1 1999 <td>16/9/99</td> <td>1999</td> <td>Fall</td> <td>Athabasca</td> <td>Muskeg Confluence</td> <td>ARMR</td> <td>TRPR</td> <td>223</td> <td>8.3</td> <td>7.4</td> <td>4.17</td> <td>3.46</td> <td>F</td> <td>SD</td> <td>2</td> <td>0.076</td> <td>0.237</td> <td>642</td> <td>1</td> <td></td>	16/9/99	1999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	223	8.3	7.4	4.17	3.46	F	SD	2	0.076	0.237	642	1	
16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 226 7.8 7.2 3.74 3.16 F SD 1 0.094 0.217 922 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 227 8.0 7.1 3.84 3.36 M SD 1 0.094 0.217 922 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 226 7.8 7.1 3.84 3.36 M SD 1 0.094 0.217 922 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 228 7.8 7.1 3.66 3.10 F SD 3 0.061 0.244 935 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 229 7.2 6.5 2.77 2.43 M SD 3 0.037 0.053 1 1	16/9/99	1999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	224	8.9	8.4	5.03	4.38	F	SD	2	0.106	0.304	1241	1	
16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 227 8.0 7.1 3.84 3.36 M SD 1 0.055 0.078 0 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 227 8.0 7.1 3.84 3.36 M SD 1 0.055 0.078 0 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 229 7.2 6.5 2.77 2.43 M SD 3 0.037 0.053 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 229 7.2 6.5 2.77 2.43 M SD 3 0.037 0.053 1 1000 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 229 7.2 6.5 2.77 2.43 M SD 3 0.037 0.053 1	16/9/99	1999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	225	8.6	7.6	4.57	4.00	F	SD	3	0.068	0.212	1302	1	
16/9/99 199 Fall Athabasca Muskeg Confluence ARMR TRPR 228 7.8 7.1 3.66 3.10 F SD 3 0.061 0.244 935 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 229 7.2 6.5 2.77 2.43 M SD 3 0.037 0.053 1	16/9/99	1999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	226	7.8	7.2	3.74	3.16	F	SD	1	0.094	0.217	922	1	
16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 229 7.2 6.5 2.77 2.43 M SD 3 0.037 0.053 1	16/9/99	1999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	227	8.0	7.1	3.84	3.36	М	SD	1	0.055	0.078		0	
	16/9/99	1999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	228	7.8	7.1	3.66	3.10	F	SD	3	0.061	0.244	935	1	
16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 230 7.8 7.0 2.89 3.42 F SD 4 0.070 0.188 1	16/9/99	1999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	229	7.2	6.5	2.77	2.43	М	SD	3	0.037	0.053		1	
	16/9/99	1999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	230	7.8	7.0	2.89	3.42	F	SD	4	0.070	0.188		1	

									Total	Fork	Total	Carcass				Liver	Gonad			
Party Party <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Length</th><th>Length</th><th>Weight</th><th></th><th></th><th>Maturity</th><th></th><th>Weight</th><th>Weight</th><th>Fecundity</th><th>Mesentaric</th><th></th></th<>									Length	Length	Weight			Maturity		Weight	Weight	Fecundity	Mesentaric	
Bigs Full Autome Hunde Control Non- Non- Non- Non- Non- <th>Date</th> <th>Year</th> <th>Season</th> <th>Waterbody</th> <th>Location</th> <th>Site</th> <th>Species</th> <th>Fish #</th> <th>(cm)</th> <th>(cm)</th> <th>(g)</th> <th>(g)</th> <th>Sex</th> <th>Stage</th> <th>Age</th> <th>(g)</th> <th>(g)</th> <th>(# eggs)</th> <th>Fat</th> <th>External Pathology</th>	Date	Year	Season	Waterbody	Location	Site	Species	Fish #	(cm)	(cm)	(g)	(g)	Sex	Stage	Age	(g)	(g)	(# eggs)	Fat	External Pathology
Image Fiel Anderson A	16/9/99	1999	Fall	Athabasca	Muskeg Confluence				8.9	8.0	5.02	4.35	F	SD	-	0.090	0.334	1060	1	
Bigs Big Big </td <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>					-															
Image Image Antages Mateges M					-															
1900 101 Antases Macescontures AND P 2 0 2 0 0 0 0 <td>16/9/99</td> <td>1999</td> <td>Fall</td> <td>Athabasca</td> <td></td> <td>ARMR</td> <td>TRPR</td> <td>234</td> <td>8.1</td> <td>7.3</td> <td>3.59</td> <td>3.24</td> <td>м</td> <td>SD</td> <td>1</td> <td>0.044</td> <td>0.069</td> <td></td> <td>1</td> <td></td>	16/9/99	1999	Fall	Athabasca		ARMR	TRPR	234	8.1	7.3	3.59	3.24	м	SD	1	0.044	0.069		1	
1999 1909 161 Allasse Masse	16/9/99	1999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	235	8.4	7.6	4.74	4.19	F	SD	2	0.070	0.262	873	1	
Image Faul Analoge An	16/9/99	1999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	236	8.0	7.4	3.63	3.17	М	SD	3	0.048	0.090		1	
Image File Andrage An	16/9/99	1999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	237	7.5	6.8	3.33	2.94	F	SD	3	0.051	0.158	460	1	
Image Fiel Attained Ausge Cortange Authained Ausge Cortange Authained Ausge Cortange	16/9/99	1999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	238	10.3	9.7	7.45	6.62	F	SD	4	0.101	0.346	1526	0	
Texpon Field Allosing Manages Manages <th< td=""><td>16/9/99</td><td>1999</td><td>Fall</td><td>Athabasca</td><td>Muskeg Confluence</td><td>ARMR</td><td>TRPR</td><td>239</td><td>8.4</td><td>7.6</td><td>4.30</td><td>3.77</td><td>F</td><td>SD</td><td>3</td><td>0.251</td><td>0.247</td><td>662</td><td>1</td><td></td></th<>	16/9/99	1999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	239	8.4	7.6	4.30	3.77	F	SD	3	0.251	0.247	662	1	
Tebel Piol Addage Mainese Main			Fall		Muskeg Confluence	ARMR			8.2	7.3	4.15									
Image Image <th< td=""><td></td><td></td><td></td><td>Athabasca</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1062</td><td></td><td></td></th<>				Athabasca	-													1062		
Ham Ham Makes Mak					-															
1999 199 1 Andrage Makege Continuer Abage Tope P 26 7.8 7.9 2.9 M SD 0.40 0.004 0.004 0.004 0.004 0.004 1999 19 A Andresso Makege Continuer Abage Continuer																				paralyzed from the dorsal fin down (gone white)
Wey Pion Fail Antabase Makes Conturner Abage Tarpe Zei Zei Zei D 0.03 0.04 I I Wey Pion Fail Antabase Makes Conturner Abage Tarpe Zei Zei Zei D 0.03 0.024 6.24 12 Zei Zei Zei Wey Pion Pion Antabase Makes Conturner Abage Tarpe Zei Zei </td <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>					-															
Term Term Attain					-															tew observed parasites (intestine)
Tegory Fill Allange Al					-													670		
Tedde Tedde <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																				
Tend Tend Analases Makases Output Analases Makases Output Set Se					-													1204		
Person Person Anabases Makes Confunce APM PEPR 27 7 6 6 7 6 0 0 0 0 0 1 Person Person <					-															
Tell Fail Athabasa Musing Confluence Abasia See 1 See 1 See 1 See 1 See 1 Tell Athabasa Musing Confluence Abasia M					-															
Perior Fail Athabasa Musing Confluence AMR TPR 23 7.8 7.0 2.47 2.80 7.1 2.80 7.1 6.902 1.90 6.907 1.1 169999 1999 Fail Athabasa Musing Confluence AMR TRPR 2.55 7.3 6.7 2.74 4.8 N S.0 0.050 0.055 1 1 16999 1998 Fail Athabasa Musing Confluence AMR TRPR 2.55 7.4 6.6 3.05 2.7 M S.0 0.050 0.055 1 1.003 16009 1996 Fail Athabasa Musing Confluence AMR TRPR 2.65 2.6 2.6 2.0 0.020 0.020 1.24 2.0 16009 1996 Fail Athabasas Musing Confluence AMR TRPR 2.65 2.6 2.8 7.8 5.0 1.0 0.031 0.526 1.1 1.0019					-															
PHOMP Paul Altabasca Maxkag Conlumen ARMR TPP 254 7.3 6.7 2.7 2.44 M S0.036 0.045 C.1 16099 1999 Fail Athabasca Maxkag Conlumen ARMR TPP 255 7.3 6.7 2.9 2.8 M S0.035 0.055 1 16099 1999 Fail Athabasca Maxkag Conlumen ARMR TPR 2.9 7.4 6.6 3.05 2.0 0.039 0.060 1 1 16099 1999 Fail Athabasca Maxkag Conlumen ARMR TPR 2.8 8.4 7.7 4.9 8.0 1 0.039 0.030 0.101 1 16099 1999 Fail Athabasca Maxkag Conlumen ARMR TPR 280 8.1 6.6 3.0 2.80 F 5.0 3.0 0.031 0.101 1.0014 1.0014 1.0014 1.0014 1.0014 1					-													637		
Pieley Fail Allabase Mukeg Confluence ANR TER 25 7.3 6.7 2.99 2.68 M SD 3 0.050 0.055 1 Felsyes Fail Allabases Mukeg Confluence ANR TER 255 7.4 6.6 3.00 2.71 M SD 1 0.053 0.055 0.053 1 Fels Allabases Mukeg Confluence ANR TER 255 7.4 6.6 3.05 2.7 M SD 1 0.053 0.051 1 Fels Allabases Mukeg Confluence ANR TER 255 7.4 6.6 3.05 2.7 N 0.6 3 0.010 0.023 128 1 Fels Allabases Mukeg Confluence ANR TER 2.6 7.4 6.6 3.03 2.7 N 1 0.045 1 1 Fels Allabases Mukeg Confluence ANR </td <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td>					0															
Tel:090 1909 Fail Alvabase Muske Confluence AVR TER 258 7.6 6.9 3.09 2.7 M S.05 1 0.053 1 0.053 1 0.053 1 0.053 1 0.051 1 0.051 1 0.051 1 0.051 1 0.051 1 0.051 1 0.051 1 0.051 1 0.051 1 0.051 1 0.051 1 0.051 1 0.051 1 0.051 1 0.051 1 0.051					0															
160090 1990 Fall Athabasca Muskag Contlunno ARMR TRPR 258 8.4 7.7 4.50 4.0 F SD 2 0.033 0.101 3.210 11 160090 1999 Fall Athabasca Muskag Contlunno ARMR TRPR 250 7.0 6.4 2.44 2.15 F SD 3 0.010 3.21 1244 2 160090 1999 Fall Athabasca Muskag Contlunno ARMR TRPR 220 7.2 6.5 2.78 4.30 2.30 0.010 0.331 0.040 0.103 5.50 1 160090 1999 Fall Athabasca Muskag Contlunno ARMR TRPR 220 7.5 6.8 3.00 2.78 M SD 3 0.040 0.058 1 1 160090 1999 Fall Athabasca Muskag Contlunno ARMR TRPR 280 7.5 6.8 3.01 2.00 3 0.044 0.056 1 1 1 1 1	16/9/99	1999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	256	7.6	6.9	3.09	2.71	м	SD	3	0.057	0.053		1	
Horison Fail Athabasca Musice Confluence ARMR TPRP 259 7.0 6.4 2.44 2.15 F SD 4 0.038 0.103 510 1 Horison Hambasca Musikeg Confluence ARMR TRPR 250 6.1 6.103 6.103 510 1.1 Horison Hambasca Musikeg Confluence ARMR TRPR 260 8.0 6.1 6.26 2.78 2.80 F SD 1 0.046 0.130 526 1 Horison Hambasca Musikeg Confluence ARMR TRPR 261 7.5 6.8 3.00 2.76 1 0.046 0.130 526 1 Horison Ham Athabasca Musikeg Confluence ARMR TRPR 261 7.4 6.8 3.00 2.60 M SD 3 0.044 0.056 1 Horison Fail Athabasca Musikeg Confluence ARMR T	16/9/99	1999	Fall	Athabasca	-	ARMR	TRPR	257	7.4		3.05	2.79	м	SD	1	0.039	0.060		1	
Feld Athabasca Muskeg Confluence ARM TRPR 280 8.1 6.65 2.86 4.80 F SD 3 0.101 0.221 1284 2 16/999 Fail Athabasca Muskeg Confluence ARM TRPR 221 7.2 6.5 2.78 2.38 F SD 3 0.017 0.199 4.77 0 16/999 Ipad Athabasca Muskeg Confluence ARM TRPR 221 7.7 6.6 2.78 V 1 0.046 0.103 2.52 1 16/999 Ipad Athabasca Muskeg Confluence ARM TRPR 281 7.5 6.8 3.00 2.73 M SD 3 0.044 0.056 -1 16/999 Fail Athabasca Muskeg Confluence ARM TRPR 286 7.4 6.6 3.01 2.60 M SD 3 0.044 0.056 -1 16/999 Fail Athabasca Muskeg Confluence ARM TRPR 286 7.4 6.6 </td <td>16/9/99</td> <td>1999</td> <td>Fall</td> <td>Athabasca</td> <td>Muskeg Confluence</td> <td>ARMR</td> <td>TRPR</td> <td>258</td> <td>8.4</td> <td>7.7</td> <td>4.59</td> <td>4.06</td> <td>F</td> <td>SD</td> <td>2</td> <td>0.062</td> <td>0.250</td> <td>875</td> <td>2</td> <td></td>	16/9/99	1999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	258	8.4	7.7	4.59	4.06	F	SD	2	0.062	0.250	875	2	
Ife 0009 1909 Fail Attrabasca Muskeg Confluence ARMR TRPR 281 7.2 6.5 2.78 2.38 F SD 3 0.047 0.19 477 0 16/090 1909 Fail Attrabasca Muskeg Confluence ARMR TRPR 262 7.4 6.7 3.0 2.60 F SD 1 0.046 0.130 526 1 16/090 1909 Fail Attrabasca Muskeg Confluence ARMR TRPR 281 7.5 6.8 3.00 2.73 3.5 M SD 0.072 0.242 611 2 16/090 1909 Fail Attrabasca Muskeg Confluence ARMR TRPR 267 7.4 6.6 3.00 2.60 M SD 3 0.050 0.021 1 1 16/090 1909 Fail Attrabasca Muskeg Confluence ARMR TRPR 267 7.4 6.6 3.00 2.60 M SD 1 0.072 0.425 5.1 1	16/9/99	1999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	259	7.0	6.4	2.44	2.15	F	SD	4	0.038	0.103	510	1	
169/99 1999 Fail Anhabasca Muskag Confluence ARMR TRPR 262 7.4 6.7 6.6 3.00 2.69 F SD 1 0.046 0.130 526 1 16/19/9 1999 Fail Anhabasca Muskeg Confluence ARMR TRPR 262 7.5 6.8 3.00 2.73 M SD 3 0.063 1 16/19/9 1999 Fail Anhabasca Muskeg Confluence ARMR TRPR 266 7.4 6.8 3.00 2.73 M SD 3 0.043 0.056 1 16/19/9 1999 Fail Anhabasca Muskeg Confluence ARMR TRPR 266 7.4 6.6 3.01 2.83 M SD 3 0.044 0.056 1 16/19/9 1999 Fail Anhabasca Muskeg Confluence ARMR TRPR 266 7.4 6.6 3.01 2.80 3 0.044 0.057 1 16/19/9 1999 Fail Anhabasca Muskeg	16/9/99	1999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	260	8.9	8.1	5.65	4.89	F	SD	3	0.101	0.321	1284	2	
Horses Hall Athabasca Muskeg Confluence ARMR TRPR 263 7.5 6.8 3.00 2.73 M SD 3 0.039 0.063 1 Horses Horses Muskeg Confluence ARMR TRPR 264 8.4 7.5 6.8 3.00 2.73 M SD 3 0.039 0.063 1 Horses Horses Muskeg Confluence ARMR TRPR 266 7.5 6.8 3.30 2.76 M SD 3 0.056 1 Horses Horses Muskeg Confluence ARMR TRPR 266 7.5 6.8 3.30 2.26 M SD 3 0.066 1 Horses Horses Muskeg Confluence ARMR TRPR 266 7.6 6.8 3.30 2.26 M SD 3 0.044 0.056 1 Horses Horses Muskeg Confluence ARMR TRPR 260 7.8 7.3 3.22 2.90 M SD 2.0558 0.231 115	16/9/99	1999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	261	7.2	6.5	2.78	2.38	F	SD	3	0.047	0.159	477	0	
16/999 199 Fall Athabasca Muskeg Confluence ARMR TRPR 264 8.4 7.5 4.35 3.78 F SD 0.072 0.242 611 2 16/999 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 266 7.5 6.8 3.30 2.66 M SD 3 0.044 0.056 1 16/999 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 266 7.4 6.6 3.01 2.69 M SD 3 0.044 0.056 1 16/999 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 266 7.4 6.6 3.01 2.69 M SD 3 0.044 0.056 1 1 16/999 Pall Athabasca Muskeg Confluence ARMR TRPR 270 9.1 8.1 5.63 4.89 F SD 0.092 0.245 531 2 16/999 1999 Fall Athabasca	16/9/99	1999	Fall	Athabasca	Muskeg Confluence	ARMR	TRPR	262	7.4	6.7	3.03	2.69	F	SD	1	0.046	0.130	526	1	
16/999 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 266 7.5 6.8 3.0 2.96 M SD 3 0.066 0.056 2 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 266 7.4 6.6 3.01 2.69 M SD 3 0.056 0.056 2 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 267 7.4 6.6 3.01 2.69 M SD 3 0.056 0.057 1 16/999 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 278 7.5 4.64 4.04 F SD 0.92 0.245 5.31 2 16/999 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 271 7.5 6.6 3.30 2.97 M SD 2 0.040 0.048 1 16/999 1999 Fall Athabasca Muskeg Conflu				Athabasca	Muskeg Confluence	ARMR									3					
16/9/99 199 Fall Athabasca Muskeg Confluence ARMR TRPR 266 7.4 6.9 3.79 3.35 M SD 5 0.030 0.082 2 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 266 7.4 6.6 3.01 2.69 M SD 5 0.034 0.056 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 268 7.8 7.3 3.32 2.99 M SD 3 0.044 0.056 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 269 8.4 7.5 4.64 4.04 F SD 0.092 0.245 531 1 16/9/99 Fall Athabasca Muskeg Confluence ARMR TRPR 270 9.1 8.1 5.63 3.00 9.7 M SD 0.044 0.048 0 1 16/9/99 Fall Athabasca Muskeg					-								_					611		
16/9/99 199 Fail Athabasca Muskeg Confluence ARMR TRPR 267 7.4 6.6 3.01 2.69 M SD 5 0.034 0.066 1 16/999 1999 Fail Athabasca Muskeg Confluence ARMR TRPR 268 7.8 3.32 2.99 M SD 3 0.044 0.057 1 16/999 1999 Fail Athabasca Muskeg Confluence ARMR TRPR 269 8.4 7.5 4.64 4.04 F SD 2 0.040 0.057 1 16/999 1999 Fail Athabasca Muskeg Confluence ARMR TRPR 270 6.6 3.0 2.97 M SD 2 0.040 0.080 1 16/999 1999 Fail Athabasca Muskeg Confluence ARMR TRPR 270 7.5 6.6 3.30 M SD 2 0.040 0.080 1 16/999 1999 Fail Athabasca Muskeg Confluence ARMR <td< td=""><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>					0															
16/9/99 199 Fail Athabasca Muskeg Confluence ARMR TRPR 268 7.8 7.3 3.32 2.99 M SD 3 0.044 0.057 1 16/9/99 199 Fail Athabasca Muskeg Confluence ARMR TRPR 269 8.4 7.5 4.64 4.04 F SD 2 0.058 0.231 1155 1 16/9/99 199 Fail Athabasca Muskeg Confluence ARMR TRPR 270 9.1 8.1 5.63 4.89 F SD 0.092 0.245 5.31 2 16/9/99 199 Fail Athabasca Muskeg Confluence ARMR TRPR 270 6.6 3.30 2.87 M SD 2 0.040 0.080 1 16/9/99 199 Fail Athabasca Muskeg Confluence ARMR TRPR 271 7.5 6.7 3.57 3.20 M SD 2 0.040 0.048 0 1 16/9/99 199 Fail <					-															
16/9/99 199 Fall Athabasca Muskeg Confluence ARMR TRPR 269 8.4 7.5 4.64 4.04 F SD 2 0.092 0.231 1155 1 16/9/99 199 Fall Athabasca Muskeg Confluence ARMR TRPR 270 9.1 8.11 5.63 4.89 F SD 2 0.092 0.245 5.31 2 16/9/99 199 Fall Athabasca Muskeg Confluence ARMR TRPR 271 7.5 6.6 3.30 2.97 M SD 2 0.004 0.080 1 1 16/9/99 999 Fall Athabasca Muskeg Confluence ARMR TRPR 271 7.5 6.7 3.15 2.80 7 0.040 0.048 0 1 16/999 999 Fall Athabasca Muskeg Confluence ARMR TRPR 271 8.0 7.3 3.67 3.30 M SD 4 0.044 0.044 0.048 0 16/999 <t< td=""><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					0															
16/9/99 Fall Athabasca Muskeg Confluence ARM TRPR 270 9.1 8.1 5.63 4.89 F SD 0.092 0.245 531 2 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 271 7.5 6.8 3.30 2.97 M SD 2 0.040 0.080 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 272 7.5 6.7 3.15 2.88 F SD 2 0.040 0.048 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 272 7.5 6.7 3.15 2.88 F SD 2 0.040 0.048 1 16 16 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 275 8.9 8.5 5.82 5.27 F SD 2 0.116 0.275 0 16/9/99 1999 Fall					-															
16/9/99 199 Fall Athabasca Muskeg Confluence ARMR TRPR 271 7.5 6.8 3.30 2.97 M SD 2 0.040 0.080 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 272 7.5 6.7 3.15 2.88 F SD 2 0.039 0.146 348 1 16/9/99 1999 Fall Athabasca Muskeg Confluence ARMR TRPR 273 8.0 7.1 3.54 3.20 M SD 0.040 0.048 0 16/9/99 1999 Fall Athabasca Reference ARR TRPR 276 8.9 7.9 5.19 4.52 F SD 4 0.044 0.046 1 16/9/99 1999 Fall Athabasca Reference ARR TRPR 276 8.9 7.9 5.19 4.52 F SD 4 0.116 0.315 805 0 1 16/9/99 1999 Fall					-										2					
I6/9/99 199 Fall Athabasca Muskeg Confluence ARM TRPR 27 7.5 6.7 3.15 2.88 F SD 2 0.039 0.146 348 1 16/9/99 199 Fall Athabasca Muskeg Confluence ARM TRPR 273 8.0 7.1 3.54 3.20 M SD 0.040 0.048 0 16/9/99 199 Fall Athabasca Muskeg Confluence ARM TRPR 273 8.0 7.3 3.67 3.30 M SD 4 0.044 0.046 1 16/9/99 199 Fall Athabasca Reference ARR TRPR 276 8.9 8.5 5.82 5.2 7.5 8.0 4 0.044 0.064 1 16/9/99 199 Fall Athabasca Reference ARR TRPR 277 9.4 8.5 6.75 6.03 F SD 4 0.041 0.035 0.0 16/9/99 1999 Fall Athabasca Referenc					-													531		
I6/9/99 199 Fall Athabasca Muskeg Confluence ARM TRPR 273 8.0 7.1 3.54 3.20 M SD 0.040 0.048 0 16/9/99 199 Fall Athabasca Muskeg Confluence ARM TRPR 273 8.0 7.3 3.67 3.30 M SD 4 0.044 0.046 1 16/9/99 199 Fall Athabasca Reference ARR TRPR 275 8.9 8.5 5.82 5.27 F SD 4 0.044 0.064 1 16/9/99 199 Fall Athabasca Reference ARR TRPR 275 8.9 8.5 5.82 5.27 F SD 4 0.044 0.044 0.044 10 0.046 16/9/99 199 Fall Athabasca Reference ARR TRPR 277 9.4 8.5 6.75 6.03 F SD 4 0.116 0.315 805 0 16/9/99 199 Fall At					-							-						3/18		
I6/9/99 199 Fall Athabasca Muskeg Confluence ARM TRPR 274 8.0 7.3 3.67 3.30 M SD 4 0.044 0.064 1 16/9/99 199 Fall Athabasca Reference ARR TRPR 275 8.9 8.5 5.82 5.27 F SD 2 0.116 0.275 0 16/9/99 199 Fall Athabasca Reference ARR TRPR 276 8.9 7.9 5.19 4.52 F SD 4 0.044 0.064 1 16/9/99 199 Fall Athabasca Reference ARR TRPR 276 8.9 7.9 5.19 4.52 F SD 4 0.116 0.315 805 0 16/9/99 199 Fall Athabasca Reference ARR TRPR 278 8.4 7.8 4.04 F SD 2 0.094 0.225 611 1 16/9/99 199 Fall Athabasca Reference <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>340</td> <td></td> <td></td>													_					340		
I6/9/99 1999 Fall Athabasca Reference ARR TRPR 275 8.9 8.5 5.82 5.27 F SD 2 0.116 0.275 0 16/9/99 1999 Fall Athabasca Reference ARR TRPR 276 8.9 7.9 5.19 4.52 F SD 4 No Sample 0.232 0 16/9/99 1999 Fall Athabasca Reference ARR TRPR 277 9.4 8.5 6.75 6.03 F SD 4 0.116 0.315 805 0 16/9/99 199 Fall Athabasca Reference ARR TRPR 277 9.4 8.5 6.75 6.03 F SD 4 0.116 0.315 805 0 16/9/99 199 Fall Athabasca Reference ARR TRPR 279 8.4 7.5 4.05 F SD 2 0.092 0.255 611 1 16/9/99 1999 Fall Athabasca					0								_		4					
16/9/99 1999 Fall Athabasca Reference ARR TRPR 276 8.9 7.9 5.19 4.52 F SD 4 No Sample 0.232 00 16/9/99 1999 Fall Athabasca Reference ARR TRPR 277 9.4 8.5 6.75 6.03 F SD 4 0.116 0.315 805 0 16/9/99 1999 Fall Athabasca Reference ARR TRPR 276 8.4 7.8 5.31 4.56 F SD 2 0.092 0.256 0 16/9/99 1999 Fall Athabasca Reference ARR TRPR 279 8.4 7.5 4.05 F SD 6 0.094 0.225 611 1 16/9/99 1999 Fall Athabasca Reference ARR TRPR 279 8.4 7.5 4.05 F SD 2 0.068 0.236 611 1 16/9/99 Pall Athabasca Reference ARR </td <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>					-															
16/9/99 199 Fall Athabasca Reference ARR TRPR 277 9.4 8.5 6.75 6.03 F SD 4 0.116 0.315 805 0 16/9/99 199 Fall Athabasca Reference ARR TRPR 278 8.4 7.8 5.31 4.56 F SD 2 0.092 0.256 0 16/9/99 199 Fall Athabasca Reference ARR TRPR 279 8.4 7.8 5.31 4.56 F SD 2 0.092 0.256 0 16/9/99 199 Fall Athabasca Reference ARR TRPR 279 8.4 7.5 4.75 4.04 F SD 6 0.94 0.225 611 1 16/9/99 199 Fall Athabasca Reference ARR TRPR 281 7.8 7.0 4.12 3.53 F SD 3 0.068 0.236 384 0 17/9/99 199 Fall Athabas													_							
16/9/99 199 Fall Athabasca Reference ARR TRPR 278 8.4 7.8 5.31 4.56 F SD 2 0.092 0.256 0 16/9/99 199 Fall Athabasca Reference ARR TRPR 279 8.4 7.5 4.78 4.04 F SD 6 0.092 0.256 1 1 16/9/99 199 Fall Athabasca Reference ARR TRPR 279 8.4 7.5 4.76 4.04 F SD 6 0.094 0.225 611 1 16/9/99 199 Fall Athabasca Reference ARR TRPR 280 8.3 7.9 4.75 4.05 F SD 2 0.068 0.236 384 0 17/9/99 199 Fall Athabasca Reference ARR TRPR 280 7.8 7.2 3.53 F SD 3 0.067 0.168 0.266 851 1 17/9/99 199 Fall <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>805</td> <td></td> <td></td>													_					805		
16/9/99 199 Fall Athabasca Reference ARR TRPR 279 8.4 7.5 4.78 4.04 F SD 6 0.094 0.225 611 1 16/9/99 199 Fall Athabasca Reference ARR TRPR 280 8.3 7.9 4.75 4.05 F SD 2 0.068 0.226 611 1 17/9/99 199 Fall Athabasca Reference ARR TRPR 280 8.3 7.9 4.75 4.05 F SD 2 0.068 0.226 611 1 17/9/99 199 Fall Athabasca Reference ARR TRPR 280 7.8 7.0 4.12 3.53 F SD 3 0.064 0.266 851 1 17/9/99 199 Fall Athabasca Reference ARR TRPR 283 7.6 7.2 3.32 F SD 3 0.064 0.164 0.265 611 1 17/9/99 1999 </td <td></td> <td>_</td> <td></td> <td>· ·</td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td>													_		· ·					<u> </u>
16/9/99 1999 Fall Athabasca Reference ARR TRPR 280 8.3 7.9 4.75 4.05 F SD 2 0.068 0.236 384 0< 17/9/99 1999 Fall Athabasca Reference ARR TRPR 280 8.3 7.9 4.75 4.05 F SD 3 0.068 0.236 384 0 17/9/99 1999 Fall Athabasca Reference ARR TRPR 280 7.8 7.0 4.12 3.53 F SD 3 0.064 0.266 851 1 17/9/99 1999 Fall Athabasca Reference ARR TRPR 280 7.8 7.2 3.78 3.32 F SD 3 0.067 0.182 819 1 17/9/99 1999 Fall Athabasca Reference ARR TRPR 280 6.8 2.10 F SD 3 0.060 0.015 0.01 1 17/9/99 1999 Fall <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>611</td><td></td><td></td></td<>																		611		
17/9/99 199 Fall Athabasca Reference ARR TRPR 281 7.8 7.0 4.12 3.53 F SD 3 0.064 0.266 851 1 17/9/99 199 Fall Athabasca Reference ARR TRPR 282 7.8 7.2 3.78 3.32 F SD 3 0.064 0.266 851 1 17/9/99 199 Fall Athabasca Reference ARR TRPR 283 6.7 6.0 2.36 2.10 F SD 3 0.064 0.266 851 1 17/9/99 199 Fall Athabasca Reference ARR TRPR 283 6.7 6.0 2.36 2.10 F SD 3 0.060 0.060 0 17/9/99 199 Fall Athabasca Reference ARR TRPR 284 6.8 6.3 2.68 2.35 F SD 3 0.030 0.125 444 1																			0	
17/9/99 199 Fall Athabasca Reference ARR TRPR 282 7.8 7.2 3.78 3.32 F SD 3 0.067 0.182 819 1 17/9/99 199 Fall Athabasca Reference ARR TRPR 283 6.7 6.0 2.36 2.10 F SD 3 0.067 0.182 819 1 17/9/99 199 Fall Athabasca Reference ARR TRPR 283 6.7 6.0 2.36 2.10 F SD 3 0.060 0 0 17/9/99 199 Fall Athabasca Reference ARR TRPR 284 6.8 6.3 2.68 2.35 F SD 3 0.030 0.125 444 1																				
17/9/99 199 Fall Athabasca Reference ARR TRPR 283 6.7 6.0 2.36 2.10 F SD 2 0.035 0.060 0 17/9/99 199 Fall Athabasca Reference ARR TRPR 283 6.6 6.3 2.68 2.35 F SD 3 0.030 0.125 444 1			Fall																	
17/9/99 1999 Fall Athabasca Reference ARR TRPR 284 6.8 6.3 2.68 2.35 F SD 3 0.030 0.125 444 1	17/9/99		Fall			ARR			6.7	6.0	2.36	2.10	F	SD	2		0.060		0	
	17/9/99		Fall			ARR			6.8				F					444	1	
1/1/3/33 1333 Fall Alliauasca Reletence Arr IRTR 203 /.0 0.0 3.23 2.30 F SD 3 0.003 0.13/ 003 0	17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	285	7.6	6.8	3.29	2.90	F	SD	3	0.053	0.157	603	0	

								Total	Fork	Total	Carcass				Liver	Gonad			
								Length	Length	Weight	Weight		Maturity		Weight	Weight	Fecundity	Mesentaric	
Date	Year	Season	Waterbody	Location	Site	Species	Fish #	(cm)	(cm)	(g)	(g)	Sex	Stage	Age	(g)	(g)	(# eggs)	Fat	External Pathology
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	286	7.4	6.6	2.92	2.57	М	SD	3	0.039	0.055		1	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	287	8.4	7.5	4.29	3.78	F	SD	2	0.053	0.228	874	1	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	288	8.5	7.6	4.28	3.80	F	SD	2	0.056	0.268	1212	1	
17/9/99		Fall	Athabasca	Reference	ARR	TRPR	289	7.2	6.6	3.03	2.67	M	SD	2	0.036	0.041		2	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	290	5.7	5.2	1.28	1.16	M	SD	1	0.020	0.019		1	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	291	7.1	6.5	2.67	2.41	м	SD	3	0.033	0.032		1	light active erosion (tail fin eroded on ventral side)
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	292	8.0	7.2	3.75	3.30	F	SD	4	0.056	0.174	655	2	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	293	7.4	6.6	3.08	2.79	м	SD	3	0.039	0.054		1	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	294	7.1	6.3	2.51	2.27	М	SD	4	0.022	0.049		0	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	295	8.3	7.7	4.56	4.05	F	SD	2	0.060	0.259		2	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	296	8.2	7.4	4.36	3.96	М	SD	3	0.057	0.107		1	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	297	8.0	7.2	3.84	3.43	F	SD	2	0.064	0.187		1	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	298	7.9	7.0	3.59	3.09	F	SD	3	0.063	0.168	743	1	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	299	8.5	7.9	4.97	4.29	F	SD	2	0.096	0.310	1302	2	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	300	8.2	7.4	4.01	3.48	F	SD	4	0.063	0.190	496	1	tumor/parasite above anal fin, on liver; few parasites on intestine
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	301	8.2	7.6	4.23	3.74	F	SD	5	0.067	0.208	1109	1	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	302	8.2	7.3	4.22	3.86	М	SD	2	0.050	0.065		2	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	303	8.1	7.3	4.05	3.48	М	SD	4	0.045	0.062		1	few observed parasites (pancreas)
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	304	8.2	7.4	4.32	3.75	F	SD	2	0.084	0.245	735	1	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	305	7.7	6.9	3.47	3.14	М	SD	3	0.043	0.054		1	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	306	6.3	5.7	1.97	1.72	М	SD	1	0.036	0.030		1	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	307	7.3	6.6	2.86	2.52	М	SD	3	0.044	0.039		1	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	308	7.2	7.0	3.87	3.39	F	SD	3	0.069	0.175		2	other: bottom half of tail missing
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	309	8.4	7.7	4.57	3.94	F	SD	3	0.068	0.291	707	1	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	310	7.7	7.0	3.40	3.10	М	SD	3	0.041	0.057	İ	0	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	311	7.9	7.2	3.65	3.31	М	SD	2	0.036	0.071	İ	1	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	312	7.8	7.0	3.52	3.29	М	SD	4	0.038	0.052	İ	1	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	313	8.0	7.4	3.90	3.36	F	SD	2	0.075	0.216	909	1	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	314	6.3	5.7	2.06	1.90	М	SD	2	0.014	0.031		1	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	315	7.2	6.4	2.76	2.44	F	SD	4	0.037	0.130	475	1	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	316	8.2	7.3	4.09	3.60	F	SD	2	0.070	0.200	660	2	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	317	5.9	5.4	1.57	1.40	М	SD	1	0.024	0.025		1	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	318	7.9	7.2	4.05	3.60	М	SD	2	0.083	0.071		2	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	319	8.2	7.4	4.15	3.80	М	SD	3	0.047	0.064		2	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	320	7.9	7.1	3.82	3.45	М	SD	2	No Sample	0.073		2	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	321	6.2	5.6	1.92	1.73	М	SD	1	0.033	0.030		1	liver: pale
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	322	7.3	6.5	2.95	2.68	М	SD	3	0.033	0.039		2	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	323	7.3	6.6	2.91	2.54	F	SD	4	0.040	0.149		1	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	324	8.2	7.4	4.24	3.60	F	SD	2	0.089	0.235		1	liver: white liquid cyst on liver (1.5x1.5mm)
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	325	7.2	6.4	2.86	2.63	М	SD	2	0.039	0.058		1	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	326	7.4	6.7	3.17	2.97	М	SD	2	0.043	0.047		1	
17/9/99	1999	Fall	Athabasca	Reference	ARR	TRPR	327	7.6	6.9	3.27	2.86	F	SD	3	0.036	0.124	362	1	

								Tatal	Freels	Tatal	0					0			
								Total	Fork	Total	Carcass		Maturity		Liver	Gonad	Fooundity	Mesentaric	
	.	•				. .	_	Length (cm)	Length (cm)	Weight (g)	Weight (g)		Stage	.	Weight (g)	Weight (g)	Fecundity (# eggs)	Fat	
Date	Year	Season	Waterbody	Location	Site	Species	Fish #		(cili)			Sex		Age					External Pathology
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	328	8.8		6.56	5.82	F	SD	4	0.105	0.108	519	0	moderate parasites (intestine)
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	329	8.2		5.28	4.63	F	SD	3	0.104	0.068	291	0	moderate parasites (intestine and liver)
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	330	8.4		5.58	4.93	M	SD	3	0.086	0.103		0	moderate parasites (left opercula, internal parasites in dorsal cavity)
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	331	8.7		6.99	6.11	F	SD	4	0.122	0.109	320	1	moderate parasites
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	333	8.0		4.47	3.84	M	SD	3	0.072	0.106		0	numerous parasites (intestine, testes)
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	334	7.1		2.56	2.21	F	SD	3	0.027	0.037	174	0	
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	336	7.5		3.86	3.41	М	SD	5	0.044	0.064		0	
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	337	7.5		4.14	3.55	М	SD	1	0.069	0.105		0	moderate parasites (intestine)
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	338	6.4		2.28	1.99	F	SD	1	0.053	0.031	72	0	
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	339	7.2		3.35	2.90	F	SD	3	0.075	0.060	177	1	moderate parasites
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	341	6.5		2.30	1.97	F	SD	2	0.040	0.032	96	1	moderate parasites
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	342	7.0		3.42	2.99	М	SD	2	0.042	0.061		0	numerous parasites (external and on muscle)
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	343	7.2		3.21	2.77	F	SD	1	0.054	0.050	103	1	
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	344	7.3		3.44	3.04	F	SD	2	0.042	0.047	141	1	moderate parasites
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	345	7.1		2.71	2.39	F	SD	2	0.034	0.034		1	numerous parasites (gills, body cavity)
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	346	7.0		3.05	2.53	F	SD	2	0.068	0.053	95	1	moderate parasites
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	348	7.0		2.54	2.43	М	SD	1	0.034	0.026		0	numerous parasites (gills and head, body cavity)
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	349	6.6		2.85	2.41	F	SD	5	0.101	0.047	184	1	moderate parasites (internal and external)
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	350	7.2		3.30	3.08	F	SD	7	0.063	0.046	171	1	moderate parasites (internal)
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	351	7.8		4.40	3.93	М	SD	4	0.051	0.069		1	moderate parasites (internal)
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	352	6.3		2.21	1.94	F	SD	1	0.038	0.025		0	
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	353	5.2		1.31	1.11		IM	0	0.029			0	moderate parasites (internal)
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	354	7.4		3.44	3.01	F	SD	3	0.059	0.054		2	few parasites (internal)
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	355	7.6		4.27	3.73	F	SD	1	0.120	0.057		1	moderate parasites (internal)
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	356	7.3		2.99	2.60	M	SD	1	0.030	0.059		0	moderate parasites (internal)
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	357	7.4		3.89	3.35	F	SD	3	0.070	0.063	189	0	
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	359	7.5		3.55	2.96	F	SD	4	0.084	0.056	170	1	
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	360	7.6		3.81	3.33	м	SD	3	0.049	0.072		1	
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	361	6.8		2.67	2.33	F	SD	4	0.049	0.072	125	1	
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	362	5.0		1.16	0.98		IM	4	0.036	0.035	125	0	moderate parasites (internal)
18/9/99	1999	Fall	-	Near Mouth	MRMT	SLSC	362	7.0		3.02	2.67	F	SD	2	0.036	0.004	152	0	moderate parasites (internal) moderate parasites (internal)
18/9/99			Muskeg River		MRMT	SLSC	363			2.86	2.67	F	SD		0.045			0	
	1999	Fall	Muskeg River	Near Mouth				6.8						2		0.033	103	0	few parasites (internal)
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	365	7.9		4.62	4.08	F	SD	3	0.142	0.079		1	
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	366	6.7		3.00	2.75	F	SD	2	0.040	0.034	62	1	moderate parasites (intestines)
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	367	6.7		2.63	2.30	F	SD	4	0.040	0.031	108	0	moderate parasites (intestines)
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	368	7.4		3.68	2.98	F	SD	1	0.058	0.045	182	1	moderate parasites (internal)
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	369	7.0		3.05	2.70	F	SD	1	0.067	0.037	150	0	moderate parasites (body cavity)
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	371	6.5		2.30	2.03	F	SD	1	0.040	0.027		1	moderate parasites (internal)
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	372	8.0		4.10	3.74	м	SD	4	0.036	0.082		1	moderate parasites (internal)
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	373	6.8		2.96	2.61	м	SD	1	0.042	0.051		1	moderate parasites (internal)
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	374	6.9		3.02	2.70	F	SD	2	0.046	0.043	184	1	
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	375	4.5		0.68	0.58		IM	0	0.008	0.002		1	moderate parasites (internal)
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	377	5.2		1.15	1.05	Ι	IM		0.013			1	moderate parasites (internal)
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	378	6.5		2.15	1.92	F	SD	1	0.034	0.029	60	0	few parasites (internal)
18/9/99	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	379	4.5		0.79	0.68	Т	IM		0.014			0	few parasites (internal)
18/9/99	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	380	7.1		3.01	2.66	М	SD	1	0.030	0.046		0	moderate parasites (internal)
18/9/99	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	381	6.2		1.79	1.56	м	SD	2	0.029	0.028		1	
18/9/99	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	382	7.2		2.88	2.57	F	SD	4	0.040	0.044	106	0	
18/9/99	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	383	7.1		3.11	2.72	м	SD	2	0.068	0.056		0	
18/9/99	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	384	7.2		3.48	3.14	F	SD	2	0.084	0.046		0	
18/9/99	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	385	7.4		3.50	3.07	F	SD	3	0.069	0.054	150	1	
18/9/99	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	386	7.0		2.76	2.38	F	SD	3	0.028	0.051	180	0	
18/9/99	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	387	6.8		1.97	1.78	F	SD	2	0.026	0.031	123	0	
18/9/99	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	388	6.5		2.70	2.40	F	SD	2	0.020	0.038	95	0	
18/9/99		Fall	Muskeg River	Fish Fence	MRFF	SLSC	389	6.7		2.70	2.40	M	SD	2	0.045	0.034	35	0	moderate parasites (internal)
10/9/99	1999	Fall	wuskey kivel	FISH FEHCE		3130	303	0.7		2.04	2.01	IVI	30	- 4	0.033	0.040		U	Inonerare barasites (Internal)

																		1	
								Total	Fork	Total	Carcass				Liver	Gonad	E		
		_						Length	Length	Weight	Weight	_	Maturity		Weight	Weight	Fecundity	Mesentaric	
	_	Season	Waterbody	Location		Species	Fish #	(cm)	(cm)	(g)	(g)	Sex	Stage	Age	(g)	(g)	(# eggs)	Fat	External Pathology
	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	390	7.0		3.07	2.72	М	SD	3	0.032	0.051		0	
	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	391	5.9		1.97	1.85	F	SD	1	0.034	0.014	79	0	
	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	392	6.9		2.93	2.59	М	SD	3	0.032	0.062		1	
	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	393	6.9		2.83	2.55	F	SD	2	0.044	0.033	107	0	
	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	394	6.1		1.91	1.68	F	SD		0.040	0.023	63	1	
	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	395	6.5		2.14	1.89	М	SD	1	0.022	0.041		0	
	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	396	5.3		1.18	1.02	F	SD	1	0.016	0.016	41	0	
	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	397	4.8		1.12	0.96	1	IM	0	0.008	0.003		0	
	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	398	7.7		4.55	3.99	F	SD	1	0.117	0.086	283	0	
	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	399	8.1		5.10	4.37	F	SD	2	0.165	0.084	327	1	
	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	400	7.6		3.95	3.51	F	SD	3	0.078	0.053	220	1	
19/9/99	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	401	8.4		6.26	5.54	F	SD	4	0.126	0.093	682	1	
19/9/99	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	402	8.4		5.72	4.99	М	SD	1	0.064	0.121		0	
19/9/99	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	403	8.3		5.50	4.58	М	SD	3	0.059	0.058		0	numerous parasites (intestine contains segmented worm)
19/9/99	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	404	8.8		6.79	5.94	М	SD	4	0.093	0.158		0	
19/9/99	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	405	8.4		5.48	5.00	М	SD	1	0.061	0.093		0	
19/9/99	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	406	7.8		4.53	3.97	F	SD	3	0.111	0.102	291	1	
19/9/99	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	407	8.2		5.20	4.59	М	SD	3	0.074	0.097		1	
19/9/99	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	408	8.7		6.41	5.52	F	SD	2	0.147	0.126	257	1	
19/9/99	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	410	5.3		1.53	1.23	U	IM	0	0.023	0.010		1	
19/9/99	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	412	8.1		4.94	4.26	F	SD	4	0.117	0.091	303	1	
19/9/99	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	414	8.0		4.69	4.12	F	SD	4	0.075	0.118	241	1	
19/9/99	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	415	9.6		8.31	7.10	F	SD	6	0.237	0.139	433	1	
19/9/99	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	416	7.2		3.33	2.94	F	SD	1	0.054	0.051	194	1	
19/9/99	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	418	9.0		7.06	6.21	F	SD	5	0.174	0.123	246	1	
	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	419	7.4		3.78	3.34	F	SD	1	0.059	0.050	121	1	other: papiloma on lower lip
	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	420	7.6		3.94	3.55	F	SD	3	0.055	0.056	136	1	
	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	421	7.1		5.14	4.59	F	SD	2	0.075	0.092	537	1	
	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	422	8.2		5.05	4.45	F	SD	2	0.107	0.072		0	
	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	423	11.4		13.36	12.61	M	SD	7	0.163	0.186	-	0	
	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	424	7.7		4.07	3.66	F	SD	5	0.108	0.064	164	0	few parasites
	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	425	8.4		5.18	4.55	F	SD	3	0.210	0.083	104	1	few parasites
	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	426	7.2		3.61	3.31	F	SD	2	0.072	0.003	130	1	iew parasites
	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	420	9.9		7.83	7.13	F	SD	6	0.132	0.108	302	0	
				SB Mine	SRIVIN	SLSC	427					м	SD				302	0	
	1999	Fall	Steepbank River					8.4		6.28	5.72	F		3	0.087	0.123	470	0	faur narraitea
	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	429	8.9		6.30	5.61		SD	· ·	0.096	0.101	473	, v	few parasites
	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	430	9.9		9.50	8.57	F	SD	8	0.183	0.145	481	0	
	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	431	8.7		7.20	6.52	F	SD	6	0.108	0.099	222	1	
	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	432	7.6		3.72	3.35	F	SD	4	0.066	0.054	187	1	
	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	433	7.0		3.05	2.71	F	SD	1	0.069	0.051	93	1	
	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	435	8.5	ļ	5.07	4.61	F	SD	5	0.087	0.078	308	1	
	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	436	8.3		5.12	4.65	М	SD	4	0.058	0.101		0	
	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	439	8.2		4.89	4.40	М	SD	6	0.050	0.095		0	
	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	440	7.8		4.59	4.05	М	SD	4	0.046	0.073		0	
	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	441	8.3		5.44	4.87	М	SD	4	0.073	0.093		1	
20/9/99	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	442	7.3		3.49	3.25	F	SD	1	0.036	0.047		1	
20/9/99	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	443	9.6		9.26	8.42	М	SD	4	0.077	0.194		1	few parasites
20/9/99	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	444	8.8		6.44	5.75	F	SD	3	0.115	0.101	234	1	few parasites
20/9/99	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	445	8.3		5.18	4.68	М	SD		0.058	0.117		1	
20/9/99	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	447	7.6		4.09	3.69	F	SD	1	0.058	0.053	194	0	few parasites
20/9/99	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	448	9.4	İ	8.77	7.76	F	SD	4	0.138	0.129	1	1	
20/9/99	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	449	8.6		5.77	5.46	М	SD	4	0.045	0.136		0	few parasites
	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	450	9.2		8.12	7.15	F	SD	4	0.141	0.167	495	1	
	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	451	9.1		6.85	6.24	F	SD	6	0.095	0.101	231	1	
20/9/99		Fall	Steepbank River	SB Mine	SRMN	SLSC	452	8.5		6.18	5.44	M	SD	2	0.062	0.137		0	few parasites
_0,0,00			2.30p.04.111101	02 141110	10. avii 1	0200		0.0		0.10	0.44		50	-	0.002	0.107	1		

											•		-						
								Total	Fork	Total	Carcass				Liver	Gonad	E		
								Length	Length	Weight	Weight		Maturity		Weight	Weight	Fecundity	Mesentaric	
Date 1	Year	Season	Waterbody	Location		Species	Fish #	(cm)	(cm)	(g)	(g)	Sex	Stage	Age	(g)	(g)	(# eggs)	Fat	External Pathology
	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	453	5.1		1.29	1.15	Т	IM		0.032			1	
	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	454	7.7		4.38	3.87	F	SD	1	0.082	0.075	225	0	
20/9/99 1	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	455	7.5		3.66	3.36	F	SD	3	0.137	0.054	184	1	
20/9/99 1	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	456	5.5		1.61	1.41	Т	IM		0.024	0.007		0	
20/9/99 1	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	457	5.4		1.26	1.12	Т	IM	0	0.019			0	
20/9/99 1	1999	Fall	Steepbank River	SB Mine	SRMN	SLSC	458	7.4		3.84	3.46	F	SD	2	0.067	0.068	249	1	
20/9/99 1	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	459	7.0		2.99	2.67	М	SD	1	0.015	0.038		0	
20/9/99 1	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	460	6.8		2.97	2.68	F	SD	1	0.046	0.044	144	0	
20/9/99 1	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	461	6.5		2.30	2.08	F	SD	1	0.032	0.038	123	1	
20/9/99 1	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	462	7.6		3.73	3.30	М	SD	1	0.022	0.078		0	
20/9/99 1	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	463	7.5		3.91	3.44	М	SD	2	0.052	0.064		1	few parasites
20/9/99 1	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	464	6.8		2.68	2.32	F	SD	1	0.033	0.041	95	1	
20/9/99 1	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	465	6.3		2.18	1.88	М	SD	1	0.038	0.024		0	
20/9/99 1	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	466	6.7		2.50	2.17	F	SD	1	0.055	0.045	123	1	
20/9/99 1	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	468	6.9		2.78	2.40	F	SD	2	0.060	0.046	90	0	
20/9/99 1	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	469	7.3		3.32	2.92	F	SD	2	0.039	0.065	146	1	few parasites
20/9/99 1	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	470	6.3		2.25	2.00	F	SD	1	0.030	0.030	123	1	
20/9/99 1	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	471	7.7		4.45	3.94	F	SD	2	0.076	0.062	219	1	
20/9/99 1	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	472	7.2		3.19	2.77	F	SD	3	0.048	0.045	138	1	
20/9/99 1	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	473	7.1		2.94	2.53	М	SD	1	0.036	0.073		0	
20/9/99 1	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	474	6.8		2.76	2.43	F	SD	3	0.041	0.036	103	1	
20/9/99 1	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	475	6.6		2.50	2.13	м	SD	1	0.028	0.043		0	few parasites
	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	476	6.8		2.73	2.37	F	SD	2	0.049	0.039	129	0	
	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	477	6.3		2.37	2.07	M	SD	1	0.028	0.038		0	
	1999	Fall	Muskeg River	Fish Fence	MRFF	SLSC	478	7.1		3.24	2.84	F	SD		0.068	0.072	213	1	
	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	480	6.9		2.73	2.39	м	SD	2	0.044	0.043	210	0	few parasites (intestine)
	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	481	8.6		5.96	5.46	F	SD	2	0.081	0.091		0	
	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	482	8.0		4.68	4.20	F	SD	4	0.096	0.061		1	
	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	483	9.2		6.91	5.53	M	SD	3	0.090	0.058		0	
	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	484	9.2 8.0		4.74	4.34	M	SD	1	0.058	0.038		0	few parasites
	1999	Fall	-	Near Mouth	MRMT	SLSC	485	7.4		2.74	2.40	F	SD	2	0.035	0.052		1	few parasites
	1999		Muskeg River		MRMT	SLSC	485				4.02	F	SD			0.052		1	
		Fall	Muskeg River	Near Mouth				8.0		4.51				2	0.042		100	1	few parasites
	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	487	6.4		2.41	2.14	F	SD	1	0.039	0.033	102		few parasites
	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	488	8.4		5.57	5.00	M	SD	3	0.094	0.111	107	1	few parasites
	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	489	8.3		5.57	4.95	F	SD	3	0.124	0.071	197	1	few parasites
	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	490	8.4		4.57	4.05	M	SD	4	0.059	0.106		0	few parasites
	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	491	7.8		4.38	3.93	М	SD	3	0.048	0.083		0	moderate parasites (head, pectoral fin, gills, testes, intestine); lip growth
	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	492	8.3		4.47	3.92	M	SD	3	0.057	0.098		0	numerous parasites (intestine and bottom lip)
	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	494	7.7		4.41	3.83	Μ	SD	3	0.086	0.090		0	moderate parasites
	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	495	7.7		4.22	3.75	F	SD	2	0.085	0.056	263	0	moderate parasites
	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	496	7.6	ļ	3.95	3.44	F	SD	5	0.056	0.050	113	0	few parasites (intestine)
	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	497	7.9		3.04	2.81	F	SD	3	0.053	0.037		0	few parasites
	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	498	7.2		3.17	2.74	F	SD	2	0.067	0.049	258	1	numerous parasites (intestine and right eye)
	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	499	8.2		3.32	3.02	F	SD	1	0.053	0.042	173	0	few parasites (intestine)
	1999	Fall	Muskeg River	Near Mouth	MRMT	SLSC	500	7.4		3.78	3.35	F	SD	1	0.057	0.064	264	1	moderate parasites
23/9/99 1	1999	Fall	Steepbank River	Reference	SRR	SLSC	502	7.8		4.96	4.31	М	SD	2	0.077	0.095		0	
23/9/99 1	1999	Fall	Steepbank River	Reference	SRR	SLSC	503	7.9		5.26	4.46	М	SD	2	0.106	0.095		0	
23/9/99 1	1999	Fall	Steepbank River	Reference	SRR	SLSC	504	7.5		4.22	3.69	М	SD	1	0.050	0.077		0	
23/9/99 1	1999	Fall	Steepbank River	Reference	SRR	SLSC	505	7.2		3.78	3.28	F	SD	2	0.056	0.074		0	
23/9/99 1	1999	Fall	Steepbank River	Reference	SRR	SLSC	506	9.4		9.11	7.82	F	SD	1	0.199	0.161	476	0	
23/9/99 1	1999	Fall	Steepbank River	Reference	SRR	SLSC	507	7.3	İ	4.17	3.36	F	SD	1	0.034	0.035	83	1	few parasites (large ligula)
23/9/99 1	1999	Fall	Steepbank River	Reference	SRR	SLSC	508	7.6		4.46	3.87	М	SD	1	0.051	0.099		0	
	1999	Fall	Steepbank River	Reference	SRR	SLSC	509	8.0		4.70	4.18	м	SD		0.039	0.084		1	
	1999	Fall	Steepbank River	Reference	SRR	SLSC	510	7.5		4.24	3.72	M	SD	3	0.040	0.078		0	
	1999	Fall	Steepbank River	Reference	SRR	SLSC	511	6.6		2.68	2.32	F	SD	1	0.051	0.039		1	
-0.0,00									I			· ·		· ·		2.500	I		1

								Tatal	Freels	Tatal	0				1 horas	0			
								Total	Fork	Total	Carcass		Maturity		Liver	Gonad	Feermality	Mesentaric	
		•				. .	_	Length (cm)	Length (cm)	Weight (g)	Weight (g)		Stage	.	Weight (g)	Weight (g)	Fecundity (# eggs)	Fat	
Date		Season	Waterbody	Location		Species			(cili)			Sex		Age			(# 6993)		External Pathology
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	512	7.4		3.89	3.39	М	SD	5	0.038	0.078		0	liver: slightly pale
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	513	6.7		2.96	2.55	F	SD	1	0.078	0.046	158	0	
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	514	6.5		2.70	2.41	F	SD	1	0.021	0.037	157	0	
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	515	8.1		5.00	4.37	F	SD	5	0.072	0.103	355	1	
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	516	7.7		4.96	4.50	М	SD	1	0.076	0.083		0	
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	517	6.8		3.17	2.75	F	SD	1	0.054	0.049	183	1	few parasites (intestine)
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	518	8.7		6.95	5.88	F	SD	5	0.177	0.134	439	0	
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	519	6.9		3.02	2.59	F	SD	1	0.075	0.050	155	1	
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	520	7.9		4.92	4.34	М	SD	1	0.035	0.077		0	
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	521	7.4		4.00	3.50	М	SD	1	0.056	0.034		1	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	522	7.1		3.54	3.19	F	SD	1	0.068	0.078	239	0	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	523	8.6		6.09	5.46	F	SD	5	0.198	0.103		0	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	524	8.4		6.45		F	SD	4	0.124	0.120	410	0	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	525	7.7		4.51	3.88	М	SD	1	0.036	0.081		0	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	526	6.5		2.69	2.38	М	SD	1	0.023	0.039		0	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	527	7.8		4.24	3.65	М	SD	1	0.050	0.043		1	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	528	7.5		3.82	3.50	F	SD	1	0.091	0.054	143	0	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	529	9.8		9.48	8.48	F	SD	7	0.144	0.193	654	1	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	530	8.0		4.78	4.28	М	SD		0.085	0.097		1	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	531	7.6		4.02	3.69	F	SD	2	0.046	0.066	232	0	
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	532	7.8		4.86	4.29	М	SD	1	0.070	0.095		0	
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	533	6.9		3.11	2.79	F	SD	1	0.085	0.043		1	
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	534	6.7		2.96	2.63	F	SD	1	0.091	0.041		0	
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	535	7.8		4.30	3.87	F	SD	2	0.106	0.078		1	
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	536	13.6		10.20	11.06	М	SD	6	0.213	0.325		1	few parasites (internal)
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	537	7.4		3.72	3.30	F	SD	2	0.081	0.052	130	0	
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	538	9.0		7.79	7.05	M	SD	2	0.157	0.171		1	
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	539	8.2		4.93	4.53	M	SD	- 1	0.069	0.089		1	
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	540	7.6		4.69	4.19	M	SD	1	0.074	0.111		1	
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	541	7.4		4.25	3.81	F	SD	1	0.094	0.059	233	0	few parasites
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	542	8.4		5.55	4.99	M	SD	4	0.069	0.000	200	0	few parasites (internal)
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	543	6.8		2.99	2.71	F	SD	1	0.068	0.066	226	0	
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	543	6.6		2.99	2.71	F	SD	1	0.050	0.000	120	1	few parasites (parasites on tail)
22/9/99					SRR	SLSC	544 545	7.6		4.54	4.06	м	SD	1	0.050	0.036	120	0	lew parasites (parasites off tail)
	1999	Fall	Steepbank River	Reference								F					440	0	
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	546	8.7		6.51	5.67		SD	2	0.186	0.116		1	
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	547	6.6		2.74	2.44	F	SD	•	0.070	0.036	161	1	
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	548	7.6		4.27	3.83	M	SD	1	0.049	0.078		1	
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	549	8.1		5.20	4.69	M	SD	1	0.070	0.090		1	
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	550	9.1		7.48	6.64	M	SD	3	0.086	0.139		1	
22/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	551	7.7		4.50	4.13	M	SD	1	0.048	0.098		1	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	552	7.2		3.96	3.59	М	SD	1	0.042	0.069		0	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	553	7.7		4.50	4.04	М	SD	1	0.058	0.101		0	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	554	7.5		4.23	3.81	М	SD	3	0.039	0.101		0	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	555	6.1		2.41	2.14	F	SD	1	0.062	0.036	157	0	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	556	8.2		4.99	4.32	М	SD	2	0.067	0.088		1	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	557	7.9		4.65	4.18	М	SD	4	0.061	0.100		1	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	558	8.9		6.75	5.97	F	SD	7	0.127	0.127		1	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	559	6.9		3.07	2.83	М	SD	1	0.041	0.030		0	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	560	8.0		4.96	4.39	F	SD	2	0.127	0.086		1	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	561	7.3		3.69	3.51	М	SD	1	0.038	0.078		1	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	562	7.9		4.88	4.34	М	SD	1	0.068	0.092		1	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	563	7.1		3.55	3.24	F	SD	3	0.084	0.058		1	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	564	8.0		4.85	4.18	M	SD	6	0.070	0.084		0	few parasites (external parasite on left eye)
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	637	7.7		4.89	4.27	F	SD	2	0.136	0.078	142	1	few parasites
23/9/99		Fall	Steepbank River	Reference	SRR	SLSC	638	8.7		7.65	6.80	F	SD	3	0.181	0.133	369	0	
_0,0,00					1 0	5200	000	0	I	1	0.00	· ·	00	, v	5.101	0.100	0000	, v	

								Total	Fork	Total	Carcass				Liver	Gonad			
								Length	Length	Weight	Weight		Maturity		Weight	Weight	Fecundity	Mesentaric	
Date	Year	Season	Waterbody	Location	Site	Species	Fish #	(cm)	(cm)	(g)	(g)	Sex	Stage	Age	(g)	(g)	(# eggs)	Fat	External Pathology
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	639	10.1		9.69	8.36	F	SD	7	0.164	0.172		1	skin: discolouration
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	640	9.4		9.61	8.48	F	SD	6	0.239	0.154		1	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	641	7.9		4.80	4.29	М	SD	1	0.053	0.103		1	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	642	8.2		5.50	4.98	М	SD	1	0.071	0.106		0	few parasites (near anus)
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	643	7.0		3.40	2.96	F	SD	1	0.054	0.048	146	1	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	644	7.1		3.47	3.12	F	SD	2	0.085	0.057	223	0	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	645	6.7		3.14	2.73	F	SD	1	0.087	0.048		1	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	646	6.9		3.30	2.94	F	SD	3	0.096	0.047	149	1	few parasites
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	647	7.2		3.54	3.18	F	SD	3	0.061	0.062	209	1	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	648	6.7		2.91	2.59	F	SD	1	0.074	0.039	144	0	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	649	6.7		3.01	2.65	F	SD	1	0.053	0.064	207	1	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	650	7.8		4.48	4.09	М	SD	2	0.048	0.085		0	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	651	7.0		3.42	3.01	F	SD	2	0.065	0.046		1	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	652	7.4		3.77	3.41	F	SD	1	0.082	0.055	304	1	
23/9/99	1999	Fall	Steepbank River	Reference	SRR	SLSC	653	7.0		3.09	2.70	F	SD	1	0.060	0.050	195	1	

APPENDIX V

WATER CHEMISTRY DATA FOR ACID SENSITIVE LAKES

Lake	Latitude	Longitude	Sample Date	Field pH		Tot. Alk. (mg/L CaCO₃)	Spec. Cond, (µS/cm)	TDS (mg/l.)	Turb. (NTU)	TSS (mg/L)	Colour (TCU)	Na ⁺ (mg/L)	K⁺ (mg/L)	Ca ⁺² (mg/L)	Mg ⁺² (mg/L)	HCO3 ⁻ (mg/L)	CI [:] (mg/L)	SO₄ ^{,₂} (mg/L)	PN (µg/L)	TDN (µg/L)	NH₄ ⁺ (µg/L)	NO₂+ NO₃ (µg/L)	тр (µg/L)	DP (µg/L)	PC (µg/L)	DOC (mg/L)	Chl. a (µg/L)
Oll Sands Region																											
A21	56 2667	111 2583	27-Jul-99	4 62	4 62	08	17 3	70 5	65	14 1	308	0 99	0 48	1 63	0 55	09	01	21	-	1,068	63	72	113	67	-	23.0	14 9
A24	56 2167	111 2500	27-Jul-99	4 31	4 40	0.0	14 1	415	81	80	250	0 57	0 45	0 88	0 35	-	01	16	-	965	91	12	109	62	-	15 5	297
A26	56 2167	111.1667	27-Jul-99	5 43		93	13 9	55 5	16	23	77	0 90	0 64	4 29	0 94	114	02	15	•	1,074	33	3	54	22	-	18 1	16 1
A29	56 1667	111.5417	27-Jul-99	5 55	5 43	23	12.0	28 5	14	12	43	0 70	0 35	1 17	0.48	28	0.1	13	-	572	13	2	28	7	-	12 8	82
A42	56 3500	113 1833	12-Jul-99	9 15		99	314	_ ^(a)	15 0	-	54	8 13	0 34	4 82	1 19	12 0	03	14	-	105	8	<1	200	13	-	36.6	112.4
A47	56.2417	113 1333	27-Jul-99	7 20		20	29 1	27 5	30	66	60	0 75	0 53	1 32	0.46	24	01	20	-	536	55	4	41	10	-	11 3	167
A59	55.9083	112 8667	27-Jul-99	4 82	4 87	21	212	115 0	78	700	256	2 50	0.44	2.78	077	2.5	01	28	-	838	9	5	192	42	-	443	756
A86	55 6833	111 8250	27-Jul-99	6 26	6 12	56	22.2	45 0	12	20	47	0.78	1.45	1 89	0 88	68	02	13	-	819	18	3	27	9	-	15 5	136
L1	57 2853	110 9239	03-Aug-99	6.55	6 24	67	27 4	48 0	08	14	38	0.75	0 28	2 73	1 31	82	01	3.7	154	836	24	1	23	8	1,497	13.6	52
L7	57 0903	110 7519	03-Aug-99	6.41	6.29	90	31.1	66.5	09	16	202	0.92	0 51	4 18	1 39	10 9	01	1.4	96	939	22	3	27	15	1,030	22.9	7.3
L8	57 0458	110.5975	03-Aug-99	7 23	6.75	217	54.8	790	39	66	105	2.56	0 29	5 87	2 72	26 5	0.1	1.8	453	817	17	1	57	13	3,434	20 3	27.1
L18 (Namur)	57 4444	112.6211	12-Aug-99	7.51	6.86	199	60.7	45 0	05	04	13	2 56	1.07	6.13	2 02	24 2	0.1	71	98	258	15	2	20	8	649	76	71
L23 (Otasan)	57 7072	112 3875	17-Aug-99	6 91	634	80	26.1	50 5	13	17	47	0 91	0 42	3.01	1 08	9.8	-	18	-	340	17	1	22	7		13 9	8.2
L25 (Legend)	57 4122	112 9336	12-Aug-99	8.14	6 5 1	90	28 6	22 5	35	39	20	0.98	0 60	3 27	0 94	10.9	0.1	31	349	246	2	1	41	7	2,292	68	295
L28	57 8556	112.9717	12-Aug-99	4 93	4 99	21	217	82 5	17	03	381	1 4 1	0 47	2 17	0 70	25	01	19	55	567	10	18	69	59	636	26 5	26
L30 (W Clayton)	58.0514	112 2669	03-Aug-99	4 04	3 97	0.0	210	37 5	4 1	50	215	0 61	0.17	0.70	0 19	-		07	204	422	3	3	26	8	4,279	17 7	80
L39 (A-150)	57.9600	110 3969	03-Aug-99	8 30	6.49	115	30 6	61 5	91	16 4	55	5.39	0 47	3 13	1 48	14 0	0.6	29	879	602	6	1	54	4	9,885	12 1	32 7
L4 (A-170)	57 1519	110 8514	03-Aug-99	5 93	5 81	51	23 8	64 0	14	79	208	1 02	0 22	3 31	1.13	62	06	12	310	588	4	2	45	13	3,512	23 0	19.9
L46 (Bayard)	57 7725	112 3964	12-Aug-99	6 40	6 64	24 2	894	93 0	150	36	207	5.16	1.07	7 81	2 88	29.4	0 1	137	266	2,028	597	60	150	98	1,980	16 9	26
L47	57 6894	112 7361	12-Aug-99	7 09	6 69	16 0	715	66.5	15 0	118	133	3 62	1.05	7 32	2 42	19 5	01	13 3	407	1,425	82	26	129	56	3,537	193	25 1
L49	57.7600	112.5967	12-Aug-99	621	6.15	6.6	67.2	75 5	46	43	98	4.33	0 88	5.43	1 89	81	-	19.0	276	672	15	13	80	39	1,987	16 3	10.0
L60	57 6622	112 6125	17-Aug-99	6.45	6 2 9	96	57.0	74,4	25	35	72	3 08	0.59	5.24	1.78	11 8	-	13.1	-	644	-	1	95	40		15.4	18 1
Carlbou Mountains	<i>I</i>													·							I						
E52 (Fleming)	58 7708	115.4342	06-Aug-99	6 63	6 56	14 7	45 2	86.1	12	28	283	1 50	0 80	7 23	1 63	179	08	27	69	1,060	11	48	52	40	717	24 0	51
E59 (Rocky Island)	59 1350	115 1336	06-Aug-99	694	646	97	29 4	43 0	21	22	96	0.48	0 27	4 24	1 12	118	02	2.0	132	384	16	3	31	8	967	13 9	10.2
O1 (Unnamed #6)	59 2378	114 5200	06-Aug-99	571	5 64	39	20 8	55.0	07	08	277	0 42	0 23	3 23	0 73	48	02	16	95	708	27	9	34	20	793	20 9	94
O2 (Unnamed #9)	59.3108	115 3589	06-Aug-99	6 33	6.35	97	31 1	72 5	10	10	294	0 54	0 16	5.42	1 36	118	01	14	113	500	10	6	34	21	868	24.4	10.0
03	59.0489	116 2556	06-Aug-99	7 95	6 95	35.5	59.7	739	24	24	124	1.64	0 34	8 13	274	43.3	01	26	256	614	13	5	34	12	1,771	17 6	14 3
Canadian Shleld					· · · · ·													J	ı								
L109 (Fletcher)	59.1205	110.8165	03-Aug-99	670	6 66	18.2	51 2	69 5	09	0,1	140	2.04	0.43	601	2 24	22 1	16	0.8	59	601	13	4	14	8	1.020	19 1	29
010	59 1358	110.6667	03-Aug-99		6 47	10.4	33 7	80 5	47	10.9	107	5 24	0.50	3 94	1 43	12 7	09	1.2	721	851	3	1	45	5	10,235	24.4	24 3
R1	59 1985	110 6868	03-Aug-99	6.76		13 5	39.4	55 4	14	1.2	81	1 63	0.39	4 54	1.57	16 5	10	0.8	83	515	6	4	14	6	2,030	15.8	37
R2	59.1225	110 5142	03-Aug-99	6.69	6.51	11.0	36.9	74 0	14	1.6	183	1.58	0 28	4.59	1 56	13 4	1.0	10	107	574	<1	1	20	10	2,334	217	40
R3	59.1268	110 9315	03-Aug-99			483	106.1	85.0	04	01	11	3 16	1 64	11 50	4 78	58.9	12	1.2	44	852	2	1	8	4	1,454	12.9	13
$(a)_{a} = a a b a b a c a c (a)$				•															······						I		

Table V-1 Baseline data for 32 lakes sampled in north-eastern Alberta, July 12 to August 17, 1999.

(a)_ = no data

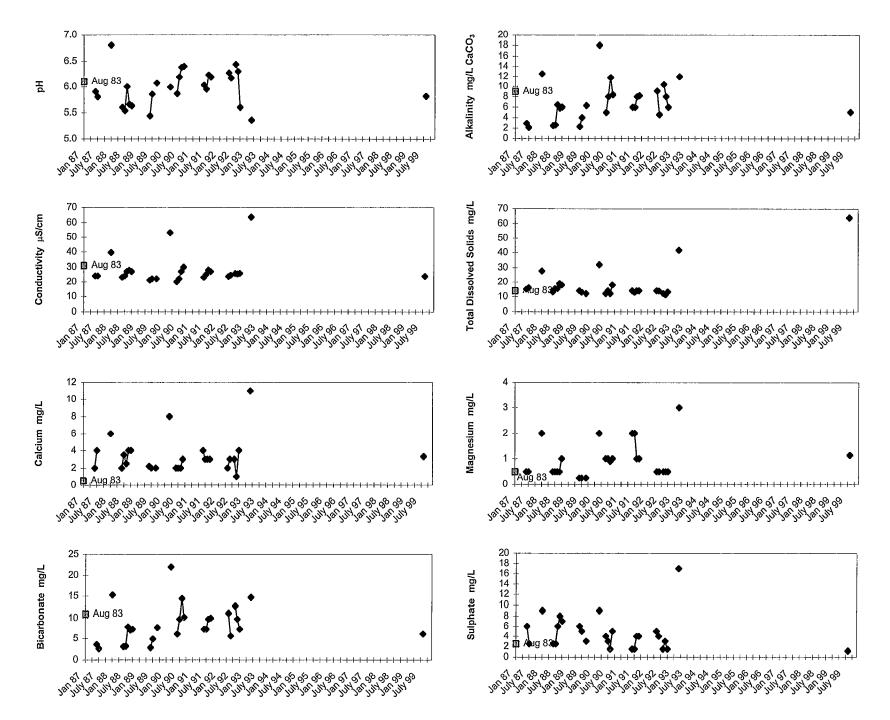


Figure V-1. Selected data for L4 (1983 - 1999), showing seasonal and year-to-year variability. Data from AENV.

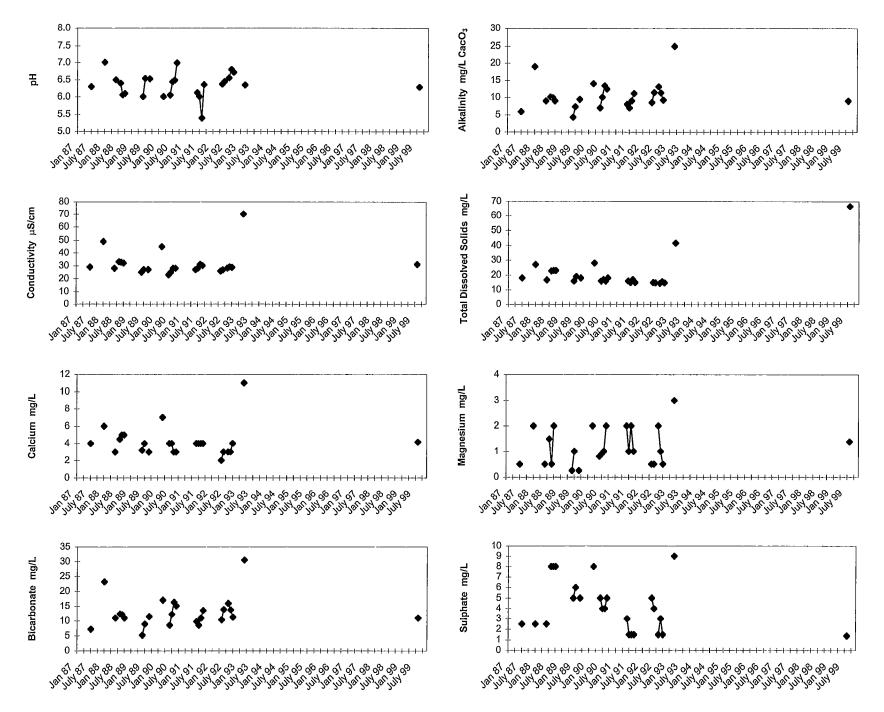


Figure V-2. Selected data for L7 (1987 - 1999), showing seasonal and year-to-year variability. Data from AENV.

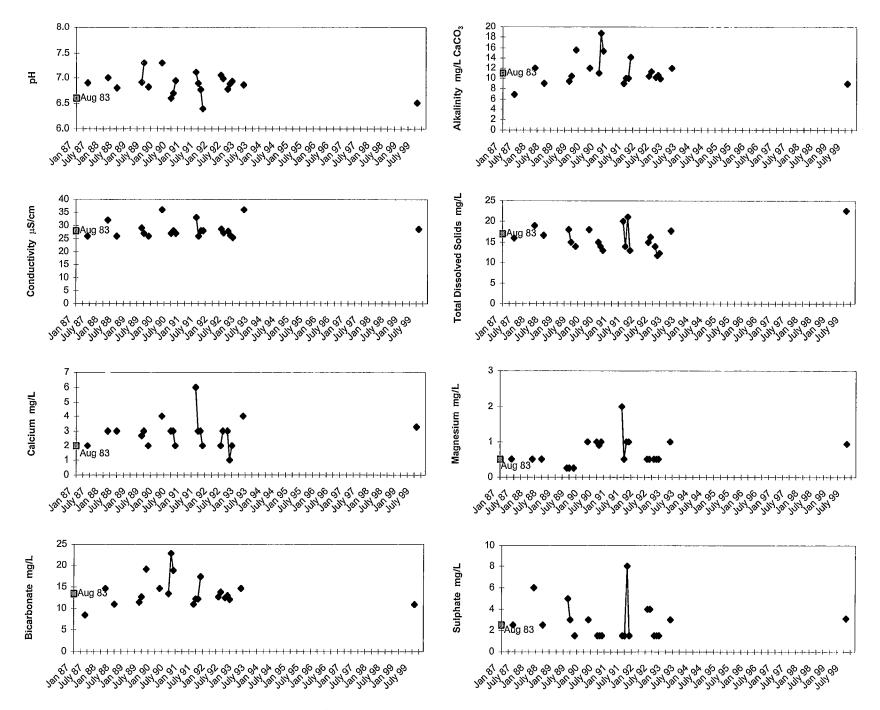


Figure V-3. Selected data for L25, Legend L. (1983 - 1999), showing seasonal and year-to-year variability. Data from AENV.

FIELD DATA FOR ACID SENSITIVE LAKES

Lake:	O10	Date:	1-Aug-99
Region:	Canadian Shield	Time:	14:20

Secchi depth (m):	0.4	Max. depth (m):	1.8
-------------------	-----	-----------------	-----

Depth	Temp (°C)	рΗ	Cond. (µS/cm)	D.O. (mg/L)
0.1	17.0	7.89	20	10.3
0.3	16.4	7.93	20	10.3
0.5	16.3	7.92	20	10.3
0.7	16.2	7.86	19	10.3
0.9	16.0	7.69	19	10.2
1.1	15.8	7.18	19	9.9
1.3	15.7	6.92	20	9.7
1.5	15.7	6.72	20	9.2

Lake:	R1	Date:	1-Aug-99
Region:	Canadian Shield	Time:	15:30

Secchi depth (m):	1.75	Max. depth (m):	14.3
-------------------	------	-----------------	------

Depth	Temp (°C)	рН	Cond. (µS/cm)	D.O. (mg/L)
0.1	17.4	6.83	24	8.7
1	16.5	6.76	23	8.9
2	16.3	6.70	24	8.8
3	16.2	6.65	24	8.7
4	16.2	6.63	24	8.4
5	16.1	6.60	24	8.4
6	16.1	6.58	24	8.3
7	15.9	6.49	24	7.9
8	15.9	6.43	24	7.7

Lake:	R2	Date:	1-Aug-99
Region:	Canadian Shield	Time:	16:30

Secchi depth (m): 1.3 Max.	Secchi depth	(m):	1.3	Max. d
----------------------------	--------------	------	-----	--------

Max. depth (m):

3.7

Depth	Temp (°C)	рН	Cond. (µS/cm)	D.O. (mg/L)
0.1	17.7	6.77	23	8.9
0.5	17.6	6.69	23	8.9
1	17.1	6.64	22	8.8
1.5	16.3	6.54	22	8.7
2	16.3	6.52	22	8.6
2.5	16.2	6.48	22	8.5

Lake:	R3	Date:	1-Aug-99
Region:	Canadian Shield	Time:	17:30

Max. depth (m):

10.9

5.75

Secchi depth (m):

Depth	Temp (°C)	рН	Cond. (µS/cm)	D.O. (mg/L)
0.1	18.6	7.69	69	8.8
1	18.5	7.68	69	8.8
2	18.0	7.68	69	8.7
3	17.9	7.67	69	8.7
4	17.9	7.65	69	8.4
5	17.8	7.64	69	8.7
6	17.6	7.51	69	8.4
7	15.8	6.97	69	7.7
8	12.4	6.80	69	6.4

Lake:	L109	Date:	1-Aug-99
Region:	Canadian Shield	Time:	13:00

Secchi depth (m):	1.75	Max. depth (m):	13.1
-------------------	------	-----------------	------

Depth	Temp (°C)	рН	Cond. (µS/cm)	D.O. (mg/L)
0.1	17.6	6.76	33	8.0
1	17.0	6.70	33	7.9
2	16.9	6.67	32	7.8
3	16.8	6.64	32	7.8
4	16.8	6.64	32	7.7
5	16.6	6.51	32	7.3
6	15.6	6.31	32	5.6
7	13.2	6.23	33	4.9
8	11.1	6.23	33	4.9
9	9.6	6.19	33	4.7
10	8.9	6.19	33	5.0
11	8.0	6.16	33	4.3
12	7.4	6.08	34	2.7

Lake:	E52	Date:	5-Aug-99
Region:	Caribou Mtns.	Time:	11:15

Secchi depth (m):	0.8	Max. depth (m):	19.3
-------------------	-----	-----------------	------

Depth	Temp (°C)	рН	Cond. (µS/cm)	D.O. (mg/L)
0.1	16.5	6.71	38	8.4
1.5	16.5	6.63	38	8.3
2	16.5	6.61	38	8.3
3	16.2	6.61	38	8.4
4	15.1	6.56	38	8.2
5	14.5	6.52	38	8.1
6	13.1	6.44	38	7.8
7	12.9	6.41	38	7.5
8	12.8	6.40	38	7.4
9	12.7	6.40	38	7.3
10	12.5	6.38	38	7.2
11	12.5	6.35	38	7.0

Lake:	E59		Date:	5-Aug-99
Region:	Caribou Mtns.		Time:	14:25
Secchi dept	:h (m):	1.3	Max. depth (m):	10
Depth	Temp (°C)	ρН	Cond. (µS/cm)	D.O. (mg/L)
Depth 0.1	Temp (°C) 17.9	рН 7.03	Cond. (µS/cm) 24	D.O. (mg/L) 9.1
	for any the second second second second second second second second second second second second second second s	-		
	17.9	7.03	24	9.1

6.5

6.1 7.4 7.4 7.4 7.4 6.7

-				
4	14.0	6.09	24	
5	13.9	6.05	24	
6	13.6	6.22	24	
7	13.4	6.29	24	
8	13.4	6.27	. 24	
9	13.3	6.29	24	
10	13.1	6.20	24	

Lake:	01	Date:	5-Aug-99
Region:	Caribou Mtns.	Time:	12:45

Secchi dept	h (m):	0.9	Max. depth (m):	2
Depth	Temp (°C)	рН	Cond. (µS/cm)	D.O. (mg/L)
0.1	18.5	5.81	16	8.3
0.5	18.5	5.71	16	8.3
1	18.5	5.64	16	8.2
1.25	16.0	5.34	17	6.1

Lake:	02		Date:	5-Aug-99
Region:	Caribou M	tns.	Time:	15:45
Secchi de	pth (m):	0.8	Max. depth (m):	9.2

Depth	Temp (°C)	рΗ	Cond. (µS/cm)	D.O. (mg/L)
0.1	19.5	6.51	25	8.9
0.75	17.4	6.33	25	8.7
2	16.4	6.26	25	8.4
3	14.9	6.20	25	8.3
4	13.8	6.14	25	8.2
5	13.6	6.06	24	8.0
6	12.9	5.95	24	7.7
7	12.2	58	23	7.4
8	11.9	5.72	23	7.0
9	11.8	5.70	23	6.8

Lake:	O3	Date:	5-Aug-99
Region:	Caribou Mtns.	Time:	17:05

Secchi depth (m):	1	Max. depth (m):	2.2

Depth	Temp (°C)	рΗ	Cond. (µS/cm)	D.O. (mg/L)
0.1	20.7	8.04	52	9.4
0.5	20.1	7.95	51	9.3
1	17.9	7.14	52	8.6
1.5	16.5	6.79	53	7.7

Lake:	A21	Date:	25-Jul-99
Region:	Oil Sands Area	Time:	12:39

0.5

Max. depth (m):

1

Secchi depth (m):

Depth	Temp (°C)	рН	Cond. (µS/cm)	D.O. (mg/L)
0.1	14.6	4.65	12	8.1
0.3	14.6	4.65	13	8.1
0.5	14.7	4.62	12	8.1
0.7	14.7	4.59	12	8.1

Lake:	A24		Date:	25-Jul-99
Region:	Oil Sands Ar	ea	Time:	13:15
Secchi dep	th (m):	0.5	Max. depth (m):	0.9

Depth	Temp (°C)	рН	Cond. (µS/cm)	D.O. (mg/L)
0.1	15.6	4.39	10	7.9
0.3	15.6	4.38	11	7.7
0.5	15.6	4.31	10	7.7
0.7	15.6	4.31	10	7.6
0.9	15.6	4.25	10	7.7

Lake:	A26	Date:	25-Jul-99
Region:	Oil Sands Area	Time:	13:50

Secchi depth (m):	0.5	Max. depth (m):	1.1
-------------------	-----	-----------------	-----

Depth	Temp (°C)	рН	Cond. (µS/cm)	D.O. (mg/L)
0.1	15.9	5.64	10	8.4
0.3	15.9	5.48	10	8.5
0.5	15.9	5.43	10	8.3
0.7	15.9	5.41	10	8.3
0.9	15.9	5.36	10	8.3
1.1	15.9	5.32	10	8.2

Lake:	A29	Date:	25-Jul-99
Region:	Oil Sands Area	Time:	11:50

Secchi depth (m):	N/A	Max. depth (m):	0.75
	(bottom vis	sible)	

Depth	Temp (°C)	рН	Cond. (µS/cm)	D.O. (mg/L)
0.1	15.5	5.67	8	8.2
0.2	15.6	5.70	8	8.1
0.5	15.6	5.55	8	8.1
0.7	15.6	5,55	8	8.1

Lake:	A42		Date:	17-Jul-99
Region:	Oil Sands	Area	Time:	N/A
Secchi de	pth (m):	0.3	Max. depth (m):	0.9

Depth	Temp (°C)	рΗ	Cond. (µS/cm)	D.O. (mg/L)
0.1	22.4	9.26	33	9.8
0.3	22.5	9.25	48	9.3
0.5	22.5	9.15	48	9.7
0.7	22.5	9.24	47	9.6

8.85

0.9

21.5

Lake:	A47	Date:	25-Jul-99
Region:	Oil Sands Area	Time:	15:21

45

8.1

Secchi depth (m):	N/A	Max. depth (m):	1.3
	(bottom vi	sible)	

Depth	Temp (°C)	pН	Cond. (µS/cm)	D.O. (mg/L)
0.1	17.3	7.31	22	9.2
0.3	17.4	7.23	22	9.1
0.5	17.2	7.20	22	9.1
0.7	17.2	7.21	22	9.1
0.9	17.2	7.16	22	9.1
1.1	17.3	7.17	22	9.1

Lake:	A59	Date:	25-Jul-99
Region:	Oil Sands Area	Time:	17:15

Secchi depth (m):	0.3	Max. depth (m):	1.1
-------------------	-----	-----------------	-----

Depth	Temp (°C)	рН	Cond. (µS/cm)	D.O. (mg/L)
0.1	17.9	4.83	15	7.9
0.3	17.9	4.87	16	7.8
0.5	17.9	4.82	16	7.8
0.7	17.9	4.81	15	7.7
0.9	17.9	4.79	15	7.7
1.1	17.9	4.77	15	7.7

Lake:	A86	Date:	25-Jul-99
Region:	Oil Sands Area	Time:	10:50

Secchi depth (m):	2.2	Max. depth (m):	2.6
-------------------	-----	-----------------	-----

Depth	Temp (°C)	рΗ	Cond. (µS/cm)	D.O. (mg/L)
0.1	17.8	6.51	17	7.8
0.5	17.8	6.26	17	7.8
1	17.8	6.19	17	7.8
1.5	17.8	6.15	17	7.8
2	17.8	6.13	17	7.8
2.5	17.8	6.13	17	7.7

Lake:	L1	Date:	31-Jul-99
Region:	Oil Sands Area	Time:	17:30

Secchi depth (m):	N/A	Max. depth (m):	0.9
	(bottom vi	sible)	

Depth	Temp (°C)	рН	Cond. (µS/cm)	D.O. (mg/L)
0.1	15.5	6.72	16	9.3
0.3	15.5	6.60	16	9.3
0.5	15.5	6.55	15	9.3
0.7	15.5	6.56	15	9.3
0.9	15.6	6.52	15	9.3

Lake:	L4 (A-170)	Date:	31-Jul-99
Region:	Oil Sands Area	Time:	21:25

Secchi depth (m):	2	Max. depth (m):	1.9
-------------------	---	-----------------	-----

Depth	Temp (°C)	рН	Cond. (µS/cm)	D.O. (mg/L)
0.1	15.4	6.09	13	8.7
0.5	15.3	5.93	13	8.7
1	15.3	5.85	13	8.7
1.5	15.3	5.86	13	8.7

Lake:	L7		Date:	31-Jul-99
Region:	Oil Sands Area		Time:	15:20
-				
Secchi de	pth (m):	1.1	Max. depth (m):	2

Depth	Temp (°C)	рΗ	Cond. (µS/cm)	D.O. (mg/L)
0.1	15.7	6.53	18	8.8
0.5	15.7	6.41	18	8.7
1	15.6	6.31	18	8.7
1.5	15.6	6.30	18	8.6

Lake:	L8	Date:	31-Jul-99
Region:	Oil Sands Area	Time:	16:15

Secchi depth (m):	1.1	Max. depth (m):	1.8
-------------------	-----	-----------------	-----

Depth	Temp (°C)	рН	Cond. (µS/cm)	D.O. (mg/L)
0.1	15.2	7.33	34	9.3
0.5	15.2	7.23	34	9.3
1	15.2	7.18	34	9.2
1.5	14.7	6.91	33	8.7

Lake:	L18 (Namur)	Date:	10-Aug-99
Region:	Oil Sands Area	Time:	10:25

Secchi depth (m):	4	Max. depth (m):	25.2
	•		£.0,£

Depth	Temp (°C)	рН	Cond. (µS/cm)	D.O. (mg/L)
0.1	15.5	7.58	53	9.0
1	15.5	7.51	52	8.9
2	15.6	7.51	53	8.9
3	15.6	7.52	52	8.9
4	15.6	7.52	53	8.9
5	15.6	7.53	52	8.9
6	15.6	7.55	53	8.9
7	15.5	7.54	53	8.9
8	15.5	7.45	53	8.8
9	15.4	7.33	53	8.7
10	15.3	7.19	53	8.4
11	15.3	7.13	53	8.3
12	14.8	6.94	53	7.7
13	13.7	6.67	53	6.4
14	13.0	6.57	53	6.3
15	12.3	6.48	53	6.0
16	12.2	6.48	53	6.1
17	11.9	6.48	52	6.2
18	11.3	6.46	52	6.3
19	11.0	6.43	52	6.1
20	10.5	6.40	52	5.8
21	10.4	6.36	52	5.4
22	10.0	6.30	52	4.6
23	9.7	6.26	53	3.8
24	9.4	6.22	54	2.7

Lake:	L23 (Otasan)	Date:	15-Aug-99
Region:	Oil Sands Area	Time:	10:28

Secchi depth (m):

2.7

Max. depth (m):

8.6

Depth	Temp (°C)	рН	Cond. (µS/cm)	D.O. (mg/L)
0.1	16.9	6.97	22	8.7
1	16.8	6.91	22	8.7
2	16.5	6.76	22	8.6
3	16.4	6.69	22	8.5
4	16.3	6.65	22	8.4
5	16.1	6.56	22	8.2
6	16.1	6.52	22	8.0
7	16.0	6.48	22	7.9
8	15.8	6.24	23	6.9

Lake:	L25 (Legend)	Date:	10-Aug-99
Region:	Oil Sands Area	Time:	11:30

Secchi depth (m):	1.3	Max. depth (m):	9.6
-------------------	-----	-----------------	-----

Depth	Temp (°C)	рН	Cond. (µS/cm)	D.O. (mg/L)
0.1	16.4	8.40	24	9.2
1	16.4	8.14	24	9.2
2	16.4	8.04	24	9.3
3	16.4	8.06	24	9.3
4	16.4	8.08	24	9.2
5	16.4	8.07	24	9.2
6	16.4	7.98	24	9.1
7	16.3	7.70	23	8.9
8	15.9	6.29	24	6.7
9	15.6	6.12	25	5.2

Lake:	L28	Date:	10-Aug-99
Region:	Oil Sands Area	Time:	13:55

Secchi depth (m): 0.6 **Max. depth (m):** 1.3

Depth	Temp (°C)	рН	Cond. (µS/cm)	D.O. (mg/L)
0.1	15.4	5.06	17	7.8
0.3	15.3	4.98	17	7.7
0.5	15.4	4.93	17	7.8
0.7	15.3	4.96	17	7.8
0.9	15.4	4.92	17	7.7
1.1	15.3	4.88	17	7.7

Lake:	L30 (Clayton)	Date:	2-Aug-99
Region:	Oil Sands Area	Time:	10:25

Secchi depth (m): 0.6 **Max. depth (m):** 1.5

Depth	Temp (°C)	рΗ	Cond. (µS/cm)	D.O. (mg/L)
0.1	14.0	3.99	12	8.7
0.5	13.9	4.04	12	8.6
1	13.9	4.02	12	8.6

Lake:	L39 (A150)	Date:	1-Aug-99
Region:	Oil Sands Area	Time:	10:40

Secchi depth (m):	0.4	Max. depth (m):	1.2
-------------------	-----	-----------------	-----

Depth	Temp (°C)	рН	Cond. (µS/cm)	D.O. (mg/L)
0.1	16.0	8.34	19	9.7
0.3	16.0	8.31	19	9.7
0.5	16.0	8.30	19	9.7
0.7	15.9	8.26	19	9.7
0.9	15.9	8.25	19	9.6

Lake:	L46 (Bayard)		Date:	10-Aug-99
Region:	Oil Sands Area		Time:	16:25
Secchi dep	th (m):	0.7	Max. depth (m):	1.7

Depth	Temp (°C)	рН	Cond. (µS/cm)	D.O. (mg/L)
0.1	16.8	6.48	80	3.8
0.3	16.8	6.42	80	3.7
0.5	16.8	6.40	80	3.6
0.7	16.8	6.39	80	3.6
0.9	16.8	6.39	80	3.6
1.1	16.8	6.37	80	3.5
1.3	16.8	6.36	80	3.5

Lake:	L47	Area	Date:	10-Aug-99
Region:	Oil Sands		Time:	13:08
Secchi der	oth (m):	0.7	Max. depth (m):	0.9

Depth	Temp (°C)	рН	Cond. (µS/cm)	D.O. (mg/L)
0.1	15.3	7.10	62	8.5
0.3	15.3	7.12	62	8.5
0.5	15.3	7.09	62	8.5
0.7	15.3	7.06	62	8.5

Lake:	L49	Date:	10-Aug-99
Region:	Oil Sands Area	Time:	15:30

Secchi depth (m):		0.6	Max. depth (m):	1.3	
Depth	Temp (°C)	рН	Cond. (µS/cm)	D.O. (mg/L)	
0.1	15.5	6.29	59	8.0	

0.1	15.5	6.29	59	8.0
0.3	15.5	6.26	59	8.0
0.5	15.5	6.21	59	8.0
0.7	15.5	6.20	59	7.9
0.9	15.5	6.18	59	8.0
1.1	15.5	6.16	59	7.9

Lake:	L60	Date:	15-Aug-99
Region:	Oil Sands Area	Time:	12:20

Secchi depth (m):	1	Max. depth (m):	3.4
-------------------	---	-----------------	-----

Depth	Temp (°C)	рΗ	Cond. (µS/cm)	D.O. (mg/L)
0.1	18.7	6.53	52	7.2
0.5	18.8	6.45	52	7.2
1	18.2	6.38	52	7.0
1.5	17.5	6.31	52	6.7
2	17.2	6.23	52	6.3
2.5	16.7	5.89	55	2.0